Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus 
Mahajan, Anubha | Sim, Xueling | Ng, Hui Jin | Manning, Alisa | Rivas, Manuel A. | Highland, Heather M. | Locke, Adam E. | Grarup, Niels | Im, Hae Kyung | Cingolani, Pablo | Flannick, Jason | Fontanillas, Pierre | Fuchsberger, Christian | Gaulton, Kyle J. | Teslovich, Tanya M. | Rayner, N. William | Robertson, Neil R. | Beer, Nicola L. | Rundle, Jana K. | Bork-Jensen, Jette | Ladenvall, Claes | Blancher, Christine | Buck, David | Buck, Gemma | Burtt, Noël P. | Gabriel, Stacey | Gjesing, Anette P. | Groves, Christopher J. | Hollensted, Mette | Huyghe, Jeroen R. | Jackson, Anne U. | Jun, Goo | Justesen, Johanne Marie | Mangino, Massimo | Murphy, Jacquelyn | Neville, Matt | Onofrio, Robert | Small, Kerrin S. | Stringham, Heather M. | Syvänen, Ann-Christine | Trakalo, Joseph | Abecasis, Goncalo | Bell, Graeme I. | Blangero, John | Cox, Nancy J. | Duggirala, Ravindranath | Hanis, Craig L. | Seielstad, Mark | Wilson, James G. | Christensen, Cramer | Brandslund, Ivan | Rauramaa, Rainer | Surdulescu, Gabriela L. | Doney, Alex S. F. | Lannfelt, Lars | Linneberg, Allan | Isomaa, Bo | Tuomi, Tiinamaija | Jørgensen, Marit E. | Jørgensen, Torben | Kuusisto, Johanna | Uusitupa, Matti | Salomaa, Veikko | Spector, Timothy D. | Morris, Andrew D. | Palmer, Colin N. A. | Collins, Francis S. | Mohlke, Karen L. | Bergman, Richard N. | Ingelsson, Erik | Lind, Lars | Tuomilehto, Jaakko | Hansen, Torben | Watanabe, Richard M. | Prokopenko, Inga | Dupuis, Josee | Karpe, Fredrik | Groop, Leif | Laakso, Markku | Pedersen, Oluf | Florez, Jose C. | Morris, Andrew P. | Altshuler, David | Meigs, James B. | Boehnke, Michael | McCarthy, Mark I. | Lindgren, Cecilia M. | Gloyn, Anna L.
PLoS Genetics  2015;11(1):e1004876.
Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.
Author Summary
Understanding how FI and FG levels are regulated is important because their derangement is a feature of T2D. Despite recent success from GWAS in identifying regions of the genome influencing glycemic traits, collectively these loci explain only a small proportion of trait variance. Unlocking the biological mechanisms driving these associations has been challenging because the vast majority of variants map to non-coding sequence, and the genes through which they exert their impact are largely unknown. In the current study, we sought to increase our understanding of the physiological pathways influencing both traits using exome-array genotyping in up to 33,231 non-diabetic individuals to identify coding variants and consequently genes associated with either FG or FI levels. We identified novel association signals for both traits including the receptor for GLP-1 agonists which are a widely used therapy for T2D. Furthermore, we identified coding variants at several GWAS loci which point to the genes underlying these association signals. Importantly, we found that multiple coding variants in G6PC2 result in a loss of protein function and lower fasting glucose levels.
PMCID: PMC4307976  PMID: 25625282
2.  Assessing the phenotypic effects in the general population of rare variants in genes for a dominant mendelian form of diabetes 
Nature genetics  2013;45(11):1380-1385.
Genome sequencing can identify individuals in the general population who harbor rare coding variants in genes for Mendelian disorders1–7 – and who consequently may have increased disease risk. However, previous studies of rare variants in phenotypically extreme individuals have ascertainment bias and may demonstrate inflated effect size estimates8–12. We sequenced seven genes for maturity-onset diabetes of the young (MODY)13 in well-phenotyped population samples14,15 (n=4,003). Rare variants were filtered according to prediction criteria used to identify disease-causing mutations: i) previously-reported in MODY, and ii) stringent de novo thresholds satisfied (rare, conserved, protein damaging). Approximately 1.5% and 0.5% of randomly selected Framingham and Jackson Heart Study individuals carried variants from these two classes, respectively. However, the vast majority of carriers remained euglycemic through middle age. Accurate estimates of variant effect sizes from population-based sequencing are needed to avoid falsely predicting a significant fraction of individuals as at risk for MODY or other Mendelian diseases.
PMCID: PMC4051627  PMID: 24097065
3.  Loss-of-function mutations in SLC30A8 protect against type 2 diabetes 
Flannick, Jason | Thorleifsson, Gudmar | Beer, Nicola L. | Jacobs, Suzanne B. R. | Grarup, Niels | Burtt, Noël P. | Mahajan, Anubha | Fuchsberger, Christian | Atzmon, Gil | Benediktsson, Rafn | Blangero, John | Bowden, Don W. | Brandslund, Ivan | Brosnan, Julia | Burslem, Frank | Chambers, John | Cho, Yoon Shin | Christensen, Cramer | Douglas, Desirée A. | Duggirala, Ravindranath | Dymek, Zachary | Farjoun, Yossi | Fennell, Timothy | Fontanillas, Pierre | Forsén, Tom | Gabriel, Stacey | Glaser, Benjamin | Gudbjartsson, Daniel F. | Hanis, Craig | Hansen, Torben | Hreidarsson, Astradur B. | Hveem, Kristian | Ingelsson, Erik | Isomaa, Bo | Johansson, Stefan | Jørgensen, Torben | Jørgensen, Marit Eika | Kathiresan, Sekar | Kong, Augustine | Kooner, Jaspal | Kravic, Jasmina | Laakso, Markku | Lee, Jong-Young | Lind, Lars | Lindgren, Cecilia M | Linneberg, Allan | Masson, Gisli | Meitinger, Thomas | Mohlke, Karen L | Molven, Anders | Morris, Andrew P. | Potluri, Shobha | Rauramaa, Rainer | Ribel-Madsen, Rasmus | Richard, Ann-Marie | Rolph, Tim | Salomaa, Veikko | Segrè, Ayellet V. | Skärstrand, Hanna | Steinthorsdottir, Valgerdur | Stringham, Heather M. | Sulem, Patrick | Tai, E Shyong | Teo, Yik Ying | Teslovich, Tanya | Thorsteinsdottir, Unnur | Trimmer, Jeff K. | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Vaziri-Sani, Fariba | Voight, Benjamin F. | Wilson, James G. | Boehnke, Michael | McCarthy, Mark I. | Njølstad, Pål R. | Pedersen, Oluf | Groop, Leif | Cox, David R. | Stefansson, Kari | Altshuler, David
Nature genetics  2014;46(4):357-363.
Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets1,2,3, yet none are described for type 2 diabetes (T2D). Through sequencing or genotyping ~150,000 individuals across five ethnicities, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8)4 and harbors a common variant (p.Trp325Arg) associated with T2D risk, glucose, and proinsulin levels5–7. Collectively, protein-truncating variant carriers had 65% reduced T2D risk (p=1.7×10−6), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34SerfsX50) demonstrated reduced glucose levels (−0.17 s.d., p=4.6×10−4). The two most common protein-truncating variants (p.Arg138X and p.Lys34SerfsX50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested reduced zinc transport increases T2D risk8,9, yet phenotypic heterogeneity was observed in rodent Slc30a8 knockouts10–15. Contrastingly, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, proposing ZnT8 inhibition as a therapeutic strategy in T2D prevention.
PMCID: PMC4051628  PMID: 24584071
4.  Insights Into the Pathogenicity of Rare Missense GCK Variants From the Identification and Functional Characterization of Compound Heterozygous and Double Mutations Inherited in Cis 
Diabetes Care  2012;35(7):1482-1484.
To demonstrate the importance of using a combined genetic and functional approach to correctly interpret a genetic test for monogenic diabetes.
We identified three probands with a phenotype consistent with maturity-onset diabetes of the young (MODY) subtype GCK-MODY, in whom two potential pathogenic mutations were identified: [R43H/G68D], [E248 K/I225M], or [G261R/D217N]. Allele-specific PCR and cosegregation were used to determine phase. Single and double mutations were kinetically characterized.
The mutations occurred in cis (double mutants) in two probands and in trans in one proband. Functional studies of all double mutants revealed inactivating kinetics. The previously reported GCK-MODY mutations R43H and G68D were inherited from an affected father and unaffected mother, respectively. Both our functional and genetic studies support R43H as the cause of GCK-MODY and G68D as a neutral rare variant.
These data highlight the need for family/functional studies, even for previously reported pathogenic mutations.
PMCID: PMC3379612  PMID: 22611063
5.  Identification and Functional Characterisation of Novel Glucokinase Mutations Causing Maturity-Onset Diabetes of the Young in Slovakia 
PLoS ONE  2012;7(4):e34541.
Heterozygous glucokinase (GCK) mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY). Over 600 GCK mutations have been reported of which ∼65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for <10% of mutations. The aim of this study was to determine the minimum prevalence of GCK-MODY amongst diabetic subjects in Slovakia by sequencing GCK in 100 Slovakian probands with a phenotype consistent with GCK-MODY and to explore the pathogenicity of identified variants through family and functional studies.
Twenty-two mutations were identified in 36 families (17 missense) of which 7 (I110N, V200A, N204D, G258R, F419S, c.580-2A>C, c.1113–1114delGC) were novel. Parental DNA was available for 22 probands (covering 14/22 mutations) and co-segregation established in all cases. Bioinformatic analysis predicted all missense mutations to be damaging. Nine (I110N, V200A, N204D, G223S, G258R, F419S, V244G, L315H, I436N) mutations were functionally evaluated. Basic kinetic analysis explained pathogenicity for 7 mutants which showed reduced glucokinase activity with relative activity indices (RAI) between 0.6 to <0.001 compared to wild-type GCK (1.0). For the remaining 2 mutants additional molecular mechanisms were investigated. Differences in glucokinase regulatory protein (GKRP) –mediated-inhibition of GCK were observed for both L315H & I436N when compared to wild type (IC50 14.6±0.1 mM & 20.3±1.6 mM vs.13.3±0.1 mM respectively [p<0.03]). Protein instability as assessed by thermal lability studies demonstrated that both L315H and I436N show marked thermal instability compared to wild-type GCK (RAI at 55°C 8.8±0.8% & 3.1±0.4% vs. 42.5±3.9% respectively [p<0.001]). The minimum prevalence of GCK-MODY amongst Slovakian patients with diabetes was 0.03%.
In conclusion, we have identified 22 GCK mutations in 36 Slovakian probands and demonstrate that combining family, bioinformatic and functional studies can aid the interpretation of variants identified by molecular diagnostic screening.
PMCID: PMC3321013  PMID: 22493702
6.  Correlation of rare coding variants in the gene encoding human glucokinase regulatory protein with phenotypic, cellular, and kinetic outcomes 
Defining the genetic contribution of rare variants to common diseases is a major basic and clinical science challenge that could offer new insights into disease etiology and provide potential for directed gene- and pathway-based prevention and treatment. Common and rare nonsynonymous variants in the GCKR gene are associated with alterations in metabolic traits, most notably serum triglyceride levels. GCKR encodes glucokinase regulatory protein (GKRP), a predominantly nuclear protein that inhibits hepatic glucokinase (GCK) and plays a critical role in glucose homeostasis. The mode of action of rare GCKR variants remains unexplored. We identified 19 nonsynonymous GCKR variants among 800 individuals from the ClinSeq medical sequencing project. Excluding the previously described common missense variant p.Pro446Leu, all variants were rare in the cohort. Accordingly, we functionally characterized all variants to evaluate their potential phenotypic effects. Defects were observed for the majority of the rare variants after assessment of cellular localization, ability to interact with GCK, and kinetic activity of the encoded proteins. Comparing the individuals with functional rare variants to those without such variants showed associations with lipid phenotypes. Our findings suggest that, while nonsynonymous GCKR variants, excluding p.Pro446Leu, are rare in individuals of mixed European descent, the majority do affect protein function. In sum, this study utilizes computational, cell biological, and biochemical methods to present a model for interpreting the clinical significance of rare genetic variants in common disease.
PMCID: PMC3248284  PMID: 22182842
7.  The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver 
Human Molecular Genetics  2009;18(21):4081-4088.
Genome-wide association studies have identified a number of signals for both Type 2 Diabetes and related quantitative traits. For the majority of loci, the transition from association signal to mutational mechanism has been difficult to establish. Glucokinase (GCK) regulates glucose storage and disposal in the liver where its activity is regulated by glucokinase regulatory protein (GKRP; gene name GCKR). Fructose-6 and fructose-1 phosphate (F6P and F1P) enhance or reduce GKRP-mediated inhibition, respectively. A common GCKR variant (P446L) is reproducibly associated with triglyceride and fasting plasma glucose levels in the general population. The aim of this study was to determine the mutational mechanism responsible for this genetic association. Recombinant human GCK and both human wild-type (WT) and P446L-GKRP proteins were generated. GCK kinetic activity was observed spectrophotometrically using an NADP+-coupled assay. WT and P446L-GKRP-mediated inhibition of GCK activity and subsequent regulation by phosphate esters were determined. Assays matched for GKRP activity demonstrated no difference in dose-dependent inhibition of GCK activity or F1P-mediated regulation. However, the response to physiologically relevant F6P levels was significantly attenuated with P446L-GKRP (n = 18; P ≤ 0.03). Experiments using equimolar concentrations of both regulatory proteins confirmed these findings (n = 9; P < 0.001). In conclusion, P446L-GKRP has reduced regulation by physiological concentrations of F6P, resulting indirectly in increased GCK activity. Altered GCK regulation in liver is predicted to enhance glycolytic flux, promoting hepatic glucose metabolism and elevating concentrations of malonyl-CoA, a substrate for de novo lipogenesis, providing a mutational mechanism for the reported association of this variant with raised triglycerides and lower glucose levels.
PMCID: PMC2758140  PMID: 19643913

Results 1-7 (7)