PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (57)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels 
Nature communications  2015;6:7208.
Metabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068 genome- and metabolome-wide significant (Z-test, P < 1.09 × 10−9) associations between single nucleotide polymorphisms (SNPs) and metabolites, involving 59 independent SNPs and 85 metabolites. Five of the fifty-nine independent SNPs are new for serum metabolite levels, and were followed-up for replication in an independent sample (N=1,182). The novel SNPs are located in or near genes encoding metabolite transporter proteins or enzymes (SLC22A16, ARG1, AGPS and ACSL1) that have demonstrated biomedical or pharmaceutical importance. The further characterization of genetic influences on metabolic phenotypes is important for progress in biological and medical research.
doi:10.1038/ncomms8208
PMCID: PMC4745136  PMID: 26068415
2.  Alterations in Lipid and Inositol Metabolisms in Two Dopaminergic Disorders 
PLoS ONE  2016;11(1):e0147129.
Background
Serum metabolite profiling can be used to identify pathways involved in the pathogenesis of and potential biomarkers for a given disease. Both restless legs syndrome (RLS) and Parkinson`s disease (PD) represent movement disorders for which currently no blood-based biomarkers are available and whose pathogenesis has not been uncovered conclusively. We performed unbiased serum metabolite profiling in search of signature metabolic changes for both diseases.
Methods
456 metabolites were quantified in serum samples of 1272 general population controls belonging to the KORA cohort, 82 PD cases and 95 RLS cases by liquid-phase chromatography and gas chromatography separation coupled with tandem mass spectrometry. Genetically determined metabotypes were calculated using genome-wide genotyping data for the 1272 general population controls.
Results
After stringent quality control, we identified decreased levels of long-chain (polyunsaturated) fatty acids of individuals with PD compared to both RLS (PD vs. RLS: p = 0.0001 to 5.80x10-9) and general population controls (PD vs. KORA: p = 6.09x10-5 to 3.45x10-32). In RLS, inositol metabolites were increased specifically (RLS vs. KORA: p = 1.35x10-6 to 3.96x10-7). The impact of dopaminergic drugs was reflected in changes in the phenylalanine/tyrosine/dopamine metabolism observed in both individuals with RLS and PD.
Conclusions
A first discovery approach using serum metabolite profiling in two dopamine-related movement disorders compared to a large general population sample identified significant alterations in the polyunsaturated fatty acid metabolism in PD and implicated the inositol metabolism in RLS. These results provide a starting point for further studies investigating new perspectives on factors involved in the pathogenesis of the two diseases as well as possible points of therapeutic intervention.
doi:10.1371/journal.pone.0147129
PMCID: PMC4726488  PMID: 26808974
3.  Novel genetic associations with serum level metabolites identified by phenotype set enrichment analyses 
Human Molecular Genetics  2014;23(21):5847-5857.
Availability of standardized metabolite panels and genome-wide single-nucleotide polymorphism data endorse the comprehensive analysis of gene–metabolite association. Currently, many studies use genome-wide association analysis to investigate the genetic effects on single metabolites (mGWAS) separately. Such studies have identified several loci that are associated not only with one but with multiple metabolites, facilitated by the fact that metabolite panels often include metabolites of the same or related pathways. Strategies that analyse several phenotypes in a combined way were shown to be able to detect additional genetic loci. One of those methods is the phenotype set enrichment analysis (PSEA) that tests sets of metabolites for enrichment at genes. Here we applied PSEA on two different panels of serum metabolites together with genome-wide data. All analyses were performed as a two-step identification–validation approach, using data from the population-based KORA cohort and the TwinsUK study. In addition to confirming genes that were already known from mGWAS, we were able to identify and validate 12 new genes. Knowledge about gene function was supported by the enriched metabolite sets. For loci with unknown gene functions, the results suggest a function that is interrelated with the metabolites, and hint at the underlying pathways.
doi:10.1093/hmg/ddu301
PMCID: PMC4271073  PMID: 24927737
4.  Gender-specific pathway differences in the human serum metabolome 
Metabolomics  2015;11(6):1815-1833.
The susceptibility for various diseases as well as the response to treatments differ considerably between men and women. As a basis for a gender-specific personalized healthcare, an extensive characterization of the molecular differences between the two genders is required. In the present study, we conducted a large-scale metabolomics analysis of 507 metabolic markers measured in serum of 1756 participants from the German KORA F4 study (903 females and 853 males). One-third of the metabolites show significant differences between males and females. A pathway analysis revealed strong differences in steroid metabolism, fatty acids and further lipids, a large fraction of amino acids, oxidative phosphorylation, purine metabolism and gamma-glutamyl dipeptides. We then extended this analysis by a network-based clustering approach. Metabolite interactions were estimated using Gaussian graphical models to get an unbiased, fully data-driven metabolic network representation. This approach is not limited to possibly arbitrary pathway boundaries and can even include poorly or uncharacterized metabolites. The network analysis revealed several strongly gender-regulated submodules across different pathways. Finally, a gender-stratified genome-wide association study was performed to determine whether the observed gender differences are caused by dimorphisms in the effects of genetic polymorphisms on the metabolome. With only a single genome-wide significant hit, our results suggest that this scenario is not the case. In summary, we report an extensive characterization and interpretation of gender-specific differences of the human serum metabolome, providing a broad basis for future analyses.
Electronic supplementary material
The online version of this article (doi:10.1007/s11306-015-0829-0) contains supplementary material, which is available to authorized users.
doi:10.1007/s11306-015-0829-0
PMCID: PMC4605991  PMID: 26491425
Epidemiology; Metabolic networks; Metabolomics; Gender differences; Systems biology
5.  Heart-Specific Knockout of the Mitochondrial Thioredoxin Reductase (Txnrd2) Induces Metabolic and Contractile Dysfunction in the Aging Myocardium 
Background
Ubiquitous deletion of thioredoxin reductase 2 (Txnrd2) in mice is embryonically lethal and associated with abnormal heart development, while constitutive, heart-specific Txnrd2 inactivation leads to dilated cardiomyopathy and perinatal death. The significance of Txnrd2 in aging cardiomyocytes, however, has not yet been examined.
Methods and Results
The tamoxifen-inducible heart-specific αMHC-MerCreMer transgene was used to inactivate loxP-flanked Txnrd2 alleles in adult mice. Hearts and isolated mitochondria from aged knockout mice were morphologically and functionally analyzed. Echocardiography revealed a significant increase in left ventricular end-systolic diameters in knockouts. Fractional shortening and ejection fraction were decreased compared with controls. Ultrastructural analysis of cardiomyocytes of aged mice showed mitochondrial degeneration and accumulation of autophagic bodies. A dysregulated autophagic activity was supported by higher levels of lysosome-associated membrane protein 1 (LAMP1), microtubule-associated protein 1A/1B-light chain 3-I (LC3-I), and p62 in knockout hearts. Isolated Txnrd2-deficient mitochondria used less oxygen and tended to produce more reactive oxygen species. Chronic hypoxia inducible factor 1, α subunit stabilization and altered transcriptional and metabolic signatures indicated that energy metabolism is deregulated.
Conclusions
These results imply a novel role of Txnrd2 in sustaining heart function during aging and suggest that Txnrd2 may be a modifier of heart failure.
doi:10.1161/JAHA.115.002153
PMCID: PMC4608093  PMID: 26199228
aging; heart failure; thioredoxin reductase 2
6.  The Human Blood Metabolome-Transcriptome Interface 
PLoS Genetics  2015;11(6):e1005274.
Biological systems consist of multiple organizational levels all densely interacting with each other to ensure function and flexibility of the system. Simultaneous analysis of cross-sectional multi-omics data from large population studies is a powerful tool to comprehensively characterize the underlying molecular mechanisms on a physiological scale. In this study, we systematically analyzed the relationship between fasting serum metabolomics and whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Correlation-based analysis identified 1,109 significant associations between 522 transcripts and 114 metabolites summarized in an integrated network, the ‘human blood metabolome-transcriptome interface’ (BMTI). Bidirectional causality analysis using Mendelian randomization did not yield any statistically significant causal associations between transcripts and metabolites. A knowledge-based interpretation and integration with a genome-scale human metabolic reconstruction revealed systematic signatures of signaling, transport and metabolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid metabolism. Moreover, the construction of a network based on functional categories illustrated the cross-talk between the biological layers at a pathway level. Using a transcription factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a regulatory level. Finally, we demonstrated how the constructed networks can be used to gain novel insights into molecular mechanisms associated to intermediate clinical traits. Overall, our results demonstrate the utility of a multi-omics integrative approach to understand the molecular mechanisms underlying both normal physiology and disease.
Author Summary
Biological systems operate on multiple, intertwined organizational layers that can nowadays be accesses by high-throughput measurement methods, the so-called ‘omics’ technologies. A major aim in the field of systems biology is to understand the flow of biological information between the different layers at a systems level in both health and disease. To unravel the complex mechanisms underlying those molecular processes and to understand how the different functional levels interact with each other, an integrated analysis of multiple layers, i.e. a ‘multi-omics‘ approach is required. In our present study, we investigate the relationship between circulating metabolites in serum and whole-blood gene expression measured in the blood of individuals from a population-based cohort. To this end, we constructed a correlation network that displays which transcript and metabolite show the same trend of up- and down-regulation. We derived a functional characterization of the network by developing a novel computational analysis. The analysis revealed systematic signatures of signaling, transport and metabolic processes on both a regulatory and a pathway level. Moreover, integrating the network with associations to clinical markers such as HDL-cholesterol, LDL-cholesterol and TG identified coordinately activated pathways or modules which might help to assess the molecular machinery behind such an intermediate phenotype.
doi:10.1371/journal.pgen.1005274
PMCID: PMC4473262  PMID: 26086077
7.  The Epoxyeicosatrienoic Acid Pathway Enhances Hepatic Insulin Signaling and is Repressed in Insulin-Resistant Mouse Liver*  
Molecular & Cellular Proteomics : MCP  2015;14(10):2764-2774.
Although it is widely accepted that ectopic lipid accumulation in the liver is associated with hepatic insulin resistance, the underlying molecular mechanisms have not been well characterized.
Here we employed time resolved quantitative proteomic profiling of mice fed a high fat diet to determine which pathways were affected during the transition of the liver to an insulin-resistant state. We identified several metabolic pathways underlying altered protein expression. In order to test the functional impact of a critical subset of these alterations, we focused on the epoxyeicosatrienoic acid (EET) eicosanoid pathway, whose deregulation coincided with the onset of hepatic insulin resistance. These results suggested that EETs may be positive modulators of hepatic insulin signaling. Analyzing EET activity in primary hepatocytes, we found that EETs enhance insulin signaling on the level of Akt. In contrast, EETs did not influence insulin receptor or insulin receptor substrate-1 phosphorylation. This effect was mediated through the eicosanoids, as overexpression of the deregulated enzymes in absence of arachidonic acid had no impact on insulin signaling. The stimulation of insulin signaling by EETs and depression of the pathway in insulin resistant liver suggest a likely role in hepatic insulin resistance. Our findings support therapeutic potential for inhibiting EET degradation.
doi:10.1074/mcp.M115.049064
PMCID: PMC4597150  PMID: 26070664
8.  Pre-Analytical Sample Quality: Metabolite Ratios as an Intrinsic Marker for Prolonged Room Temperature Exposure of Serum Samples 
PLoS ONE  2015;10(3):e0121495.
Advances in the “omics” field bring about the need for a high number of good quality samples. Many omics studies take advantage of biobanked samples to meet this need. Most of the laboratory errors occur in the pre-analytical phase. Therefore evidence-based standard operating procedures for the pre-analytical phase as well as markers to distinguish between ‘good’ and ‘bad’ quality samples taking into account the desired downstream analysis are urgently needed. We studied concentration changes of metabolites in serum samples due to pre-storage handling conditions as well as due to repeated freeze-thaw cycles. We collected fasting serum samples and subjected aliquots to up to four freeze-thaw cycles and to pre-storage handling delays of 12, 24 and 36 hours at room temperature (RT) and on wet and dry ice. For each treated aliquot, we quantified 127 metabolites through a targeted metabolomics approach. We found a clear signature of degradation in samples kept at RT. Storage on wet ice led to less pronounced concentration changes. 24 metabolites showed significant concentration changes at RT. In 22 of these, changes were already visible after only 12 hours of storage delay. Especially pronounced were increases in lysophosphatidylcholines and decreases in phosphatidylcholines. We showed that the ratio between the concentrations of these molecule classes could serve as a measure to distinguish between ‘good’ and ‘bad’ quality samples in our study. In contrast, we found quite stable metabolite concentrations during up to four freeze-thaw cycles. We concluded that pre-analytical RT handling of serum samples should be strictly avoided and serum samples should always be handled on wet ice or in cooling devices after centrifugation. Moreover, serum samples should be frozen at or below -80°C as soon as possible after centrifugation.
doi:10.1371/journal.pone.0121495
PMCID: PMC4379062  PMID: 25823017
9.  Combined Liquid Chromatography–Tandem Mass Spectrometry Analysis of Progesterone Metabolites 
PLoS ONE  2015;10(2):e0117984.
Progesterone has a number of important functions throughout the human body. While the roles of progesterone are well known, the possible actions and implications of progesterone metabolites in different tissues remain to be determined. There is a growing body of evidence that these metabolites are not inactive, but can have significant biological effects, as anesthetics, anxiolytics and anticonvulsants. Furthermore, they can facilitate synthesis of myelin components in the peripheral nervous system, have effects on human pregnancy and onset of labour, and have a neuroprotective role. For a better understanding of the functions of progesterone metabolites, improved analytical methods are essential. We have developed a combined liquid chromatography—tandem mass spectrometry (LC-MS/MS) method for detection and quantification of progesterone and 16 progesterone metabolites that has femtomolar sensitivity and good reproducibility in a single chromatographic run. MS/MS analyses were performed in positive mode and under constant electrospray ionization conditions. To increase the sensitivity, all of the transitions were recorded using the Scheduled MRM algorithm. This LC-MS/MS method requires small sample volumes and minimal sample preparation, and there is no need for derivatization. Here, we show the application of this method for evaluation of progesterone metabolism in the HES endometrial cell line. In HES cells, the metabolism of progesterone proceeds mainly to (20S)-20-hydroxy-pregn-4-ene-3-one, (20S)-20-hydroxy-5α-pregnane-3-one and (20S)-5α-pregnane-3α,20-diol. The investigation of possible biological effects of these metabolites on the endometrium is currently undergoing.
doi:10.1371/journal.pone.0117984
PMCID: PMC4332660  PMID: 25680188
10.  Pleiotropic Functions for Transcription Factor Zscan10 
PLoS ONE  2014;9(8):e104568.
The transcription factor Zscan10 had been attributed a role as a pluripotency factor in embryonic stem cells based on its interaction with Oct4 and Sox2 in in vitro assays. Here we suggest a potential role of Zscan10 in controlling progenitor cell populations in vivo. Mice homozygous for a Zscan10 mutation exhibit reduced weight, mild hypoplasia in the spleen, heart and long bones and phenocopy an eye malformation previously described for Sox2 hypomorphs. Phenotypic abnormalities are supported by the nature of Zscan10 expression in midgestation embryos and adults suggesting a role for Zscan10 in either maintaining progenitor cell subpopulation or impacting on fate choice decisions thereof.
doi:10.1371/journal.pone.0104568
PMCID: PMC4128777  PMID: 25111779
11.  Metabolomics of Ramadan fasting: an opportunity for the controlled study of physiological responses to food intake 
High-throughput screening techniques that analyze the metabolic endpoints of biological processes can identify the contributions of genetic predisposition and environmental factors to the development of common diseases. Studies applying controlled physiological challenges can reveal dysregulation in metabolic responses that may be predictive for or associated with these diseases. However, large-scale epidemiological studies with well controlled physiological challenge conditions, such as extended fasting periods and defined food intake, pose logistic challenges. Culturally and religiously motivated behavioral patterns of life style changes provide a natural setting that can be used to enroll a large number of study volunteers. Here we report a proof of principle study conducted within a Muslim community, showing that a metabolomics study during the Holy Month of Ramadan can provide a unique opportunity to explore the pre-prandial and postprandial response of human metabolism to nutritional challenges. Up to five blood samples were obtained from eleven healthy male volunteers, taken directly before and two hours after consumption of a controlled meal in the evening on days 7 and 26 of Ramadan, and after an over-night fast several weeks after Ramadan. The observed increases in glucose, insulin and lactate levels at the postprandial time point confirm the expected physiological response to food intake. Targeted metabolomics further revealed significant and physiologically plausible responses to food intake by an increase in bile acid and amino acid levels and a decrease in long-chain acyl-carnitine and polyamine levels. A decrease in the concentrations of a number of phospholipids between samples taken on days 7 and 26 of Ramadan shows that the long-term response to extended fasting may differ from the response to short-term fasting. The present study design is scalable to larger populations and may be extended to the study of the metabolic response in defined patient groups such as individuals with type 2 diabetes.
doi:10.1186/1479-5876-12-161
PMCID: PMC4063233  PMID: 24906381
Metabolomics; Nutritional challenging; Ramadan fasting; Study design; Clinical research
12.  Metabolomics approach reveals effects of antihypertensives and lipid-lowering drugs on the human metabolism 
European Journal of Epidemiology  2014;29(5):325-336.
The mechanism of antihypertensive and lipid-lowering drugs on the human organism is still not fully understood. New insights on the drugs’ action can be provided by a metabolomics-driven approach, which offers a detailed view of the physiological state of an organism. Here, we report a metabolome-wide association study with 295 metabolites in human serum from 1,762 participants of the KORA F4 (Cooperative Health Research in the Region of Augsburg) study population. Our intent was to find variations of metabolite concentrations related to the intake of various drug classes and—based on the associations found—to generate new hypotheses about on-target as well as off-target effects of these drugs. In total, we found 41 significant associations for the drug classes investigated: For beta-blockers (11 associations), angiotensin-converting enzyme (ACE) inhibitors (four assoc.), diuretics (seven assoc.), statins (ten assoc.), and fibrates (nine assoc.) the top hits were pyroglutamine, phenylalanylphenylalanine, pseudouridine, 1-arachidonoylglycerophosphocholine, and 2-hydroxyisobutyrate, respectively. For beta-blockers we observed significant associations with metabolite concentrations that are indicative of drug side-effects, such as increased serotonin and decreased free fatty acid levels. Intake of ACE inhibitors and statins associated with metabolites that provide insight into the action of the drug itself on its target, such as an association of ACE inhibitors with des-Arg(9)-bradykinin and aspartylphenylalanine, a substrate and a product of the drug-inhibited ACE. The intake of statins which reduce blood cholesterol levels, resulted in changes in the concentration of metabolites of the biosynthesis as well as of the degradation of cholesterol. Fibrates showed the strongest association with 2-hydroxyisobutyrate which might be a breakdown product of fenofibrate and, thus, a possible marker for the degradation of this drug in the human organism. The analysis of diuretics showed a heterogeneous picture that is difficult to interpret. Taken together, our results provide a basis for a deeper functional understanding of the action and side-effects of antihypertensive and lipid-lowering drugs in the general population.
Electronic supplementary material
The online version of this article (doi:10.1007/s10654-014-9910-7) contains supplementary material, which is available to authorized users.
doi:10.1007/s10654-014-9910-7
PMCID: PMC4050296  PMID: 24816436
Beta-blockers; Angiotensin-converting enzyme inhibitors; Diuretics; Statins; Fibrates; Metabolomics
13.  Integration of steroid research: Perspectives on environment factors, homeostasis in health, and disease treatment 
doi:10.1016/j.jsbmb.2011.04.011
PMCID: PMC4008313  PMID: 21558003
Endocrine disruptors; Steroids; Breast cancer; Prostate cancer; Obesity; Diabetes; Mice model; Chemistry of synthesis
14.  Early Metabolic Markers of the Development of Dysglycemia and Type 2 Diabetes and Their Physiological Significance 
Diabetes  2013;62(5):1730-1737.
Metabolomic screening of fasting plasma from nondiabetic subjects identified α-hydroxybutyrate (α-HB) and linoleoyl-glycerophosphocholine (L-GPC) as joint markers of insulin resistance (IR) and glucose intolerance. To test the predictivity of α-HB and L-GPC for incident dysglycemia, α-HB and L-GPC measurements were obtained in two observational cohorts, comprising 1,261 nondiabetic participants from the Relationship between Insulin Sensitivity and Cardiovascular Disease (RISC) study and 2,580 from the Botnia Prospective Study, with 3-year and 9.5-year follow-up data, respectively. In both cohorts, α-HB was a positive correlate and L-GPC a negative correlate of insulin sensitivity, with α-HB reciprocally related to indices of β-cell function derived from the oral glucose tolerance test (OGTT). In follow-up, α-HB was a positive predictor (adjusted odds ratios 1.25 [95% CI 1.00–1.60] and 1.26 [1.07–1.48], respectively, for each standard deviation of predictor), and L-GPC was a negative predictor (0.64 [0.48–0.85] and 0.67 [0.54–0.84]) of dysglycemia (RISC) or type 2 diabetes (Botnia), independent of familial diabetes, sex, age, BMI, and fasting glucose. Corresponding areas under the receiver operating characteristic curve were 0.791 (RISC) and 0.783 (Botnia), similar in accuracy when substituting α-HB and L-GPC with 2-h OGTT glucose concentrations. When their activity was examined, α-HB inhibited and L-GPC stimulated glucose-induced insulin release in INS-1e cells. α-HB and L-GPC are independent predictors of worsening glucose tolerance, physiologically consistent with a joint signature of IR and β-cell dysfunction.
doi:10.2337/db12-0707
PMCID: PMC3636608  PMID: 23160532
15.  Metabolic Signatures of Cultured Human Adipocytes from Metabolically Healthy versus Unhealthy Obese Individuals 
PLoS ONE  2014;9(4):e93148.
Background and Aims
Among obese subjects, metabolically healthy and unhealthy obesity (MHO/MUHO) can be differentiated: the latter is characterized by whole-body insulin resistance, hepatic steatosis, and subclinical inflammation. Aim of this study was, to identify adipocyte-specific metabolic signatures and functional biomarkers for MHO versus MUHO.
Methods
10 insulin-resistant (IR) vs. 10 insulin-sensitive (IS) non-diabetic morbidly obese (BMI >40 kg/m2) Caucasians were matched for gender, age, BMI, and percentage of body fat. From subcutaneous fat biopsies, primary preadipocytes were isolated and differentiated to adipocytes in vitro. About 280 metabolites were investigated by a targeted metabolomic approach intracellularly, extracellularly, and in plasma.
Results/Interpretation
Among others, aspartate was reduced intracellularly to one third (p = 0.0039) in IR adipocytes, pointing to a relative depletion of citric acid cycle metabolites or reduced aspartate uptake in MUHO. Other amino acids, already known to correlate with diabetes and/or obesity, were identified to differ between MUHO's and MHO's adipocytes, namely glutamine, histidine, and spermidine. Most species of phosphatidylcholines (PCs) were lower in MUHO's extracellular milieu, though simultaneously elevated intracellularly, e.g., PC aa C32∶3, pointing to increased PC synthesis and/or reduced PC release. Furthermore, altered arachidonic acid (AA) metabolism was found: 15(S)-HETE (15-hydroxy-eicosatetraenoic acid; 0 vs. 120pM; p = 0.0014), AA (1.5-fold; p = 0.0055) and docosahexaenoic acid (DHA, C22∶6; 2-fold; p = 0.0033) were higher in MUHO. This emphasizes a direct contribution of adipocytes to local adipose tissue inflammation. Elevated DHA, as an inhibitor of prostaglandin synthesis, might be a hint for counter-regulatory mechanisms in MUHO.
Conclusion/Interpretation
We identified adipocyte-inherent metabolic alterations discriminating between MHO and MUHO.
doi:10.1371/journal.pone.0093148
PMCID: PMC3973696  PMID: 24695116
16.  Interrogating causal pathways linking genetic variants, small molecule metabolites, and circulating lipids 
Genome Medicine  2014;6(3):25.
Background
Emerging technologies based on mass spectrometry or nuclear magnetic resonance enable the monitoring of hundreds of small metabolites from tissues or body fluids. Profiling of metabolites can help elucidate causal pathways linking established genetic variants to known disease risk factors such as blood lipid traits.
Methods
We applied statistical methodology to dissect causal relationships between single nucleotide polymorphisms, metabolite concentrations, and serum lipid traits, focusing on 95 genetic loci reproducibly associated with the four main serum lipids (total-, low-density lipoprotein-, and high-density lipoprotein- cholesterol and triglycerides). The dataset used included 2,973 individuals from two independent population-based cohorts with data for 151 small molecule metabolites and four main serum lipids. Three statistical approaches, namely conditional analysis, Mendelian randomization, and structural equation modeling, were compared to investigate causal relationship at sets of a single nucleotide polymorphism, a metabolite, and a lipid trait associated with one another.
Results
A subset of three lipid-associated loci (FADS1, GCKR, and LPA) have a statistically significant association with at least one main lipid and one metabolite concentration in our data, defining a total of 38 cross-associated sets of a single nucleotide polymorphism, a metabolite and a lipid trait. Structural equation modeling provided sufficient discrimination to indicate that the association of a single nucleotide polymorphism with a lipid trait was mediated through a metabolite at 15 of the 38 sets, and involving variants at the FADS1 and GCKR loci.
Conclusions
These data provide a framework for evaluating the causal role of components of the metabolome (or other intermediate factors) in mediating the association between established genetic variants and diseases or traits.
doi:10.1186/gm542
PMCID: PMC4062056  PMID: 24678845
17.  Long term conservation of human metabolic phenotypes and link to heritability 
Metabolomics  2014;10(5):0.
Changes in an individual’s human metabolic phenotype (metabotype) over time can be indicative of disorder-related modifications. Studies covering several months to a few years have shown that metabolic profiles are often specific for an individual. This “metabolic individuality” and detected changes may contribute to personalized approaches in human health care. However, it is not clear whether such individual metabotypes persist over longer time periods. Here we investigate the conservation of metabotypes characterized by 212 different metabolites of 818 participants from the Cooperative Health Research in the Region of Augsburg; Germany population, taken within a 7-year time interval. For replication, we used paired samples from 83 non-related individuals from the TwinsUK study. Results indicated that over 40 % of all study participants could be uniquely identified after 7 years based on their metabolic profiles alone. Moreover, 95 % of the study participants showed a high degree of metabotype conservation (>70 %) whereas the remaining 5 % displayed major changes in their metabolic profiles over time. These latter individuals were likely to have undergone important biochemical changes between the two time points. We further show that metabolite conservation was positively associated with heritability (rank correlation 0.74), although there were some notable exceptions. Our results suggest that monitoring changes in metabotypes over several years can trace changes in health status and may provide indications for disease onset. Moreover, our study findings provide a general reference for metabotype conservation over longer time periods that can be used in biomarker discovery studies.
Electronic supplementary material
The online version of this article (doi:10.1007/s11306-014-0629-y) contains supplementary material, which is available to authorized users.
doi:10.1007/s11306-014-0629-y
PMCID: PMC4145193  PMID: 25177233
Metabolomics; Longitudinal study; Heritability; Population study
18.  Targeted Metabolomics Identifies Reliable and Stable Metabolites in Human Serum and Plasma Samples 
PLoS ONE  2014;9(2):e89728.
Background
Information regarding the variability of metabolite levels over time in an individual is required to estimate the reproducibility of metabolite measurements. In intervention studies, it is critical to appropriately judge changes that are elicited by any kind of intervention. The pre-analytic phase (collection, transport and sample processing) is a particularly important component of data quality in multi-center studies.
Methods
Reliability of metabolites (within-and between-person variance, intraclass correlation coefficient) and stability (shipment simulation at different temperatures, use of gel-barrier collection tubes, freeze-thaw cycles) were analyzed in fasting serum and plasma samples of 22 healthy human subjects using a targeted LC-MS approach.
Results
Reliability of metabolite measurements was higher in serum compared to plasma samples and was good in most saturated short-and medium-chain acylcarnitines, amino acids, biogenic amines, glycerophospholipids, sphingolipids and hexose. The majority of metabolites were stable for 24 h on cool packs and at room temperature in non-centrifuged tubes. Plasma and serum metabolite stability showed good coherence. Serum metabolite concentrations were mostly unaffected by tube type and one or two freeze-thaw cycles.
Conclusion
A single time point measurement is assumed to be sufficient for a targeted metabolomics analysis of most metabolites. For shipment, samples should ideally be separated and frozen immediately after collection, as some amino acids and biogenic amines become unstable within 3 h on cool packs. Serum gel-barrier tubes can be used safely for this process as they have no effect on concentration in most metabolites. Shipment of non-centrifuged samples on cool packs is a cost-efficient alternative for most metabolites.
doi:10.1371/journal.pone.0089728
PMCID: PMC3933650  PMID: 24586991
19.  Identification of Serum Metabolites Associated With Risk of Type 2 Diabetes Using a Targeted Metabolomic Approach 
Diabetes  2013;62(2):639-648.
Metabolomic discovery of biomarkers of type 2 diabetes (T2D) risk may reveal etiological pathways and help to identify individuals at risk for disease. We prospectively investigated the association between serum metabolites measured by targeted metabolomics and risk of T2D in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. Variance of the metabolites was largely explained by two metabolite factors with opposing risk associations (factor 1 relative risk in extreme quintiles 0.31 [95% CI 0.21–0.44], factor 2 3.82 [2.64–5.52]). The metabolites significantly improved T2D prediction compared with established risk factors. They were further linked to insulin sensitivity and secretion in the Tübingen Family study and were partly replicated in the independent KORA (Cooperative Health Research in the Region of Augsburg) cohort. The data indicate that metabolic alterations, including sugar metabolites, amino acids, and choline-containing phospholipids, are associated early on with a higher risk of T2D.
doi:10.2337/db12-0495
PMCID: PMC3554384  PMID: 23043162
20.  Automated workflow-based exploitation of pathway databases provides new insights into genetic associations of metabolite profiles 
BMC Genomics  2013;14:865.
Background
Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) that associate with clinical phenotypes, but these SNPs usually explain just a small part of the heritability and have relatively modest effect sizes. In contrast, SNPs that associate with metabolite levels generally explain a higher percentage of the genetic variation and demonstrate larger effect sizes. Still, the discovery of SNPs associated with metabolite levels is challenging since testing all metabolites measured in typical metabolomics studies with all SNPs comes with a severe multiple testing penalty. We have developed an automated workflow approach that utilizes prior knowledge of biochemical pathways present in databases like KEGG and BioCyc to generate a smaller SNP set relevant to the metabolite. This paper explores the opportunities and challenges in the analysis of GWAS of metabolomic phenotypes and provides novel insights into the genetic basis of metabolic variation through the re-analysis of published GWAS datasets.
Results
Re-analysis of the published GWAS dataset from Illig et al. (Nature Genetics, 2010) using a pathway-based workflow (http://www.myexperiment.org/packs/319.html), confirmed previously identified hits and identified a new locus of human metabolic individuality, associating Aldehyde dehydrogenase family1 L1 (ALDH1L1) with serine/glycine ratios in blood. Replication in an independent GWAS dataset of phospholipids (Demirkan et al., PLoS Genetics, 2012) identified two novel loci supported by additional literature evidence: GPAM (Glycerol-3 phosphate acyltransferase) and CBS (Cystathionine beta-synthase). In addition, the workflow approach provided novel insight into the affected pathways and relevance of some of these gene-metabolite pairs in disease development and progression.
Conclusions
We demonstrate the utility of automated exploitation of background knowledge present in pathway databases for the analysis of GWAS datasets of metabolomic phenotypes. We report novel loci and potential biochemical mechanisms that contribute to our understanding of the genetic basis of metabolic variation and its relationship to disease development and progression.
doi:10.1186/1471-2164-14-865
PMCID: PMC3879060  PMID: 24320595
Genome-wide association; Metabolite; Genotype-phenotype prioritization; Bioinformatics; Pathway databases
21.  Human metabolic individuality in biomedical and pharmaceutical research 
Nature  2011;477(7362):10.1038/nature10354.
SUMMARY
Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 exhibit effect sizes that are unusually high for GWAS and account for 10-60% of metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism, and Crohn’s disease. Taken together our study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.
doi:10.1038/nature10354
PMCID: PMC3832838  PMID: 21886157
22.  Plasma Metabolomics Reveal Alterations of Sphingo- and Glycerophospholipid Levels in Non-Diabetic Carriers of the Transcription Factor 7-Like 2 Polymorphism rs7903146 
PLoS ONE  2013;8(10):e78430.
Aims/Hypothesis
Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene have been shown to display a powerful association with type 2 diabetes. The aim of the present study was to evaluate metabolic alterations in carriers of a common TCF7L2 risk variant.
Methods
Seventeen non-diabetic subjects carrying the T risk allele at the rs7903146 TCF7L2 locus and 24 subjects carrying no risk allele were submitted to intravenous glucose tolerance test and euglycemic-hyperinsulinemic clamp. Plasma samples were analysed for concentrations of 163 metabolites through targeted mass spectrometry.
Results
TCF7L2 risk allele carriers had a reduced first-phase insulin response and normal insulin sensitivity. Under fasting conditions, carriers of TCF7L2 rs7903146 exhibited a non-significant increase of plasma sphingomyelins (SMs), phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) species. A significant genotype effect was detected in response to challenge tests in 6 SMs (C16:0, C16:1, C18:0, C18:1, C24:0, C24:1), 5 hydroxy-SMs (C14:1, C16:1, C22:1, C22:2, C24:1), 4 lysoPCs (C14:0, C16:0, C16:1, C17:0), 3 diacyl-PCs (C28:1, C36:6, C40:4) and 4 long-chain acyl-alkyl-PCs (C40:2, C40:5, C44:5, C44:6).
Discussion
Plasma metabolomic profiling identified alterations of phospholipid metabolism in response to challenge tests in subjects with TCF7L2 rs7903146 genotype. This may reflect a genotype-mediated link to early metabolic abnormalities prior to the development of disturbed glucose tolerance.
doi:10.1371/journal.pone.0078430
PMCID: PMC3813438  PMID: 24205231
23.  Changes in metabolite profiles caused by genetically determined obesity in mice 
Metabolomics  2013;10(3):0.
The Berlin Fat Mouse Inbred (BFMI) line harbors a major recessive gene defect on chromosome 3 (jobes1) leading to juvenile obesity and metabolic syndrome. The present study aimed at the identification of metabolites that might be linked to recessively acting genes in the obesity locus. Firstly, serum metabolites were analyzed between obese BFMI and lean B6 and BFMI × B6 F1 mice to identify metabolites that are different. In a second step, a metabolite–protein network analysis was performed linking metabolites typical for BFMI mice with genes of the jobes1 region. The levels of 22 diacyl-phosphatidylcholines (PC aa), two lyso-PC and three carnitines were found to be significantly lower in obese mice compared with lean mice, while serine, glycine, arginine and hydroxysphingomyelin were higher for the same comparison. The network analysis identified PC aa C42:1 as functionally linked with the genes Ccna2 and Trpc3 via the enzymes choline kinase alpha and phospholipase A2 group 1B (PLA2G1B), respectively. Gene expression analysis revealed elevated Ccna2 expression in adipose tissue of BFMI mice. Furthermore, unique mutations were found in the Ccna2 promoter of BFMI mice which are located in binding sites for transcription factors or micro RNAs and could cause differential Ccna2 mRNA levels between BFMI and B6 mice. Increased expression of Ccna2 was consistent with higher mitotic activity of adipose tissue in BFMI mice. Therefore, we suggest a higher demand for PC necessary for adipose tissue growth and remodeling. This study highlights the relationship between metabolite profiles and the underlying genetics of obesity in the BFMI line.
Electronic supplementary material
The online version of this article (doi:10.1007/s11306-013-0590-1) contains supplementary material, which is available to authorized users.
doi:10.1007/s11306-013-0590-1
PMCID: PMC3984667  PMID: 24772056
Adiposity; Metabolism; Phosphatidylcholine
24.  Diagnosing Fatty Liver Disease: A Comparative Evaluation of Metabolic Markers, Phenotypes, Genotypes and Established Biomarkers 
PLoS ONE  2013;8(10):e76813.
Background
To date, liver biopsy is the only means of reliable diagnosis for fatty liver disease (FLD). Owing to the inevitable biopsy-associated health risks, however, the development of valid noninvasive diagnostic tools for FLD is well warranted.
Aim
We evaluated a particular metabolic profile with regard to its ability to diagnose FLD and compared its performance to that of established phenotypes, conventional biomarkers and disease-associated genotypes.
Methods
The study population comprised 115 patients with ultrasound-diagnosed FLD and 115 sex- and age-matched controls for whom the serum concentration was measured of 138 different metabolites, including acylcarnitines, amino acids, biogenic amines, hexose, phosphatidylcholines (PCs), lyso-PCs and sphingomyelins. Established phenotypes, biomarkers, disease-associated genotypes and metabolite data were included in diagnostic models for FLD using logistic regression and partial least-squares discriminant analysis. The discriminative power of the ensuing models was compared with respect to area under curve (AUC), integrated discrimination improvement (IDI) and by way of cross-validation (CV).
Results
Use of metabolic markers for predicting FLD showed the best performance among all considered types of markers, yielding an AUC of 0.8993. Additional information on phenotypes, conventional biomarkers or genotypes did not significantly improve this performance. Phospholipids and branched-chain amino acids were most informative for predicting FLD.
Conclusion
We show that the inclusion of metabolite data may substantially increase the power to diagnose FLD over that of models based solely upon phenotypes and conventional biomarkers.
doi:10.1371/journal.pone.0076813
PMCID: PMC3793954  PMID: 24130792
25.  Retinal proteome alterations in a mouse model of type 2 diabetes 
Diabetologia  2013;57(1):192-203.
Aims/hypothesis
Diabetic retinopathy is a major complication of type 2 diabetes and the leading cause of blindness in adults of working age. Neuronal defects are known to occur early in disease, but the source of this dysfunction is unknown. The aim of this study was to examine differences in the retinal membrane proteome among non-diabetic mice and mouse models of diabetes either with or without metformin treatment.
Methods
Alterations in the retinal membrane proteome of 10-week-old diabetic db/db mice, diabetic db/db mice orally treated with the anti-hyperglycaemic metformin, and congenic wild-type littermates were examined using label-free mass spectrometry. Pathway enrichment analysis was completed with Genomatix and Ingenuity. Alterations in Slc17a7 mRNA and vesicular glutamate transporter 1 (VGLUT1) protein expression were evaluated using real-time quantitative PCR and immunofluorescence.
Results
A total of 98 proteins were significantly differentially abundant between db/db and wild-type animals. Pathway enrichment analysis indicated decreases in levels of proteins related to synaptic transmission and cell signalling. Metformin treatment produced 63 differentially abundant proteins compared with untreated db/db mice, of which only 43 proteins were found to occur in both datasets, suggesting that treatment only partially normalises the alterations induced by diabetes. VGLUT1, which is responsible for loading glutamate into synaptic vesicles, was found to be differentially abundant in db/db mice and was not normalised by metformin. The decrease in Slc17a7/VGLUT1 was confirmed by transcriptomic and immunocytochemical analysis.
Conclusions/interpretation
These findings expand the knowledge of the protein changes in diabetic retinopathy and suggest that membrane-associated signalling proteins are susceptible to changes that are partially ameliorated by treatment.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-013-3070-2) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
doi:10.1007/s00125-013-3070-2
PMCID: PMC3855476  PMID: 24078137
Complex I; Diabetes; Label-free mass spectrometry; Membrane; Metformin; Proteome; Retinopathy; VGLUT1

Results 1-25 (57)