PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("sibelium, Ulf")
1.  Endotoxin induces proliferation of NSCLC in vitro and in vivo: role of COX-2 and EGFR activation 
Cancer Immunology, Immunotherapy  2012;62(2):309-320.
Lung cancer is frequently complicated by pulmonary infections which may impair prognosis of this disease. Therefore, we investigated the effect of bacterial lipopolysaccharides (LPS) on tumor proliferation in vitro in the non-small cell lung cancer (NSCLC) cell line A549, ex vivo in a tissue culture model using human NSCLC specimens and in vivo in the A549 adenocarcinoma mouse model. LPS induced a time- and dose-dependent increase in proliferation of A549 cells as quantified by MTS activity and cell counting. In parallel, an increased expression of the proliferation marker Ki-67 and cyclooxygenase (COX)-2 was detected both in A549 cells and in ex vivo human NSCLC tissue. Large amounts of COX-2-derived prostaglandin (PG)E2 were secreted from LPS-stimulated A549 cells. Pharmacological interventions revealed that the proliferative effect of LPS was dependent on CD14 and Toll-like receptor (TLR)4. Moreover, blocking of the epidermal growth factor receptor (EGFR) also decreased LPS-induced proliferation of A549 cells. Inhibition of COX-2 activity in A549 cells severely attenuated both PGE2 release and proliferation in response to LPS. Synthesis of PGE2 was also reduced by inhibiting CD14, TLR4 and EGFR in A549 cells. The proliferative effect of LPS on A549 cells could be reproduced in the A549 adenocarcinoma mouse model with enhancement of tumor growth and Ki-67 expression in implanted tumors. In summary, LPS induces proliferation of NSCLC cells in vitro, ex vivo in human NSCLC specimen and in vivo in a mouse model of NSCLC. Pulmonary infection may thus directly induce tumor progression in NSCLC.
doi:10.1007/s00262-012-1341-2
PMCID: PMC3569588  PMID: 22923191
Lung cancer; Infection; Endotoxin; Tumor proliferation; Inflammation
2.  Human Endothelial Cell Activation and Mediator Release in Response to Listeria monocytogenes Virulence Factors 
Infection and Immunity  2001;69(2):897-905.
The interaction of Listeria monocytogenes with endothelial cells represents a crucial step in the pathogenesis of listeriosis. Incubation of human umbilical vein endothelial cells (HUVEC) with wild-type L. monocytogenes (EGD) provoked immediate strong NO synthesis, attributable to listerial presentation of listeriolysin O (LLO), as the NO release was missed upon employment of a deletion mutant for LLO (EGD hly mutant) and was reproduced by purified LLO. Studies of conditions lacking extracellular Ca2+ suggested LLO-elicited Ca2+ flux as the underlying mechanism. In addition, HUVEC incubation with EGD turned out to be a potent stimulus for sustained (>12-h) upregulation of proinflammatory cytokine generation (interleukin 6 [IL-6], IL-8, and granulocyte-macrophage colony-stimulating factor). Use of deletion mutants for LLO (EGD hly mutant), listerial phosphatidylinositol-specific phospholipase C (EGD plcA mutant), broad-spectrum phospholipase C (EGD plcB mutant) and internalin B (EGD inlB mutant), as well as purified LLO, identified LLO as largely responsible for the cytokine response. Endothelial cells responded with diacylglycerole and ceramide generation as well as nuclear translocation of NF-κB to the stimulation with the LLO-producing strains EGD and Listeria innocua. The endothelial PC-phospholipase C inhibitor tricyclodecan-9-yl-xanthogenate as well as two independent inhibitors of NF-κB activation, pyrolidine dithiocarbamate and caffeic acid phenethyl ester, suppressed both the NF-κB translocation and the upregulation of cytokine synthesis. We conclude that L. monocytogenes is a potent stimulus of NO release and sustained upregulation of proinflammatory cytokine synthesis in human endothelial cells, both events being largely attributable to LLO presentation. LLO-induced transmembrane Ca2+ flux as well as a sequence of endothelial phospholipase activation and the appearance of diacylglycerole, ceramide, and NF-κB are suggested as underlying host signaling events. These endothelial responses to L. monocytogenes may well contribute to the pathogenic sequelae in severe listerial infection and sepsis.
doi:10.1128/IAI.69.2.897-905.2001
PMCID: PMC97967  PMID: 11159983
3.  Role of Listeria monocytogenes Exotoxins Listeriolysin and Phosphatidylinositol-Specific Phospholipase C in Activation of Human Neutrophils 
Infection and Immunity  1999;67(3):1125-1130.
Polymorphonuclear leukocytes (PMN) are essential for resolution of infections with Listeria monocytogenes. The present study investigated the role of the listerial exotoxins listeriolysin (LLO) and phosphatidylinositol-specific phospholipase C (PlcA) in human neutrophil activation. Different Listeria strains, mutated in individual virulence genes, as well as purified LLO were used. Coincubation of human neutrophils with wild-type L. monocytogenes provoked PMN activation, occurring independently of phagocytosis events, with concomitant elastase secretion, leukotriene generation, platelet-activating factor (PAF) synthesis, respiratory burst, and enhanced phosphoinositide hydrolysis. Degranulation and leukotriene formation were noted to be solely dependent on LLO expression, as these features were absent when the LLO-defective mutant EGD− and the avirulent strain L. innocua were used. These effects were fully reproduced by a recombinant L. innocua strain expressing LLO (INN+) and by the purified LLO molecule. LLO secretion was also required for PAF synthesis. However, wild-type L. monocytogenes was more potent in eliciting PAF formation than mutants expressing LLO, suggesting the involvement of additional virulence factors. This was even more obvious for phosphoinositide hydrolysis and respiratory burst: these events were provoked not only by INN+ but also by the LLO-defective mutant EGD− and by a recombinant L. innocua strain producing listerial PlcA. We conclude that human neutrophils react to extracellularly provided listerial exotoxins by rapid cell activation. Listeriolysin is centrally involved in triggering degranulation and lipid mediator generation, and further virulence factors such as PlcA apparently contribute to trigger neutrophil phosphoinositide hydrolysis and respiratory burst. In this way, listerial exotoxins may influence the host defense against infections with L. monocytogenes.
PMCID: PMC96438  PMID: 10024552
4.  Wegener's Granulomatosis: Anti–proteinase 3 Antibodies Are Potent Inductors of Human Endothelial Cell Signaling and Leakage Response  
Anti–neutrophil cytoplasmic antibodies (ANCAs) targeting proteinase 3 (PR3) have a high specifity for Wegener's granulomatosis (WG), and their role in activating leukocytes is well appreciated. In this study, we investigated the influence of PR3-ANCA and murine monoclonal antibodies on human umbilical vascular endothelial cells (HUVECs). Priming of HUVECs with tumor necrosis factor α induced endothelial upregulation of PR3 message and surface expression of this antigen, as measured by Cyto-ELISA, with a maximum occurrence after 2 h. Primed cells responded to low concentrations of both antibodies (25 ng–2.5 μg/ml), but not to control immunoglobulins, with pronounced, dose-dependent phosphoinositide hydrolysis, as assessed by accumulation of inositol phosphates. The signaling response peaked after 20 min, in parallel with the appearance of marked prostacyclin and platelet-activating factor synthesis. The F(ab)2 fragment of ANCA was equally potent as ANCA itself. Disrupture of the endothelial F-actin content by botulinum C2 toxin to avoid antigen–antibody internalization did not affect the response. In addition to the metabolic events, anti-PR3 challenge, in the absence of plasma components, provoked delayed, dose-dependent increase in transendothelial protein leakage. We conclude that anti-PR3 antibodies are potent inductors of the preformed phosphoinositide hydrolysis–related signal tranduction pathway in human endothelial cells. Associated metabolic events and the loss of endothelial barrier properties suggest that anti-PR3–induced activation of endothelial cells may contribute to the pathogenetic sequelae of autoimmune vasculitis characterizing WG.
PMCID: PMC2212153  PMID: 9463400

Results 1-4 (4)