PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Alphaherpesvirinae and Gammaherpesvirinae glycoprotein L and CMV UL130 originate from chemokines 
Virology Journal  2013;10:1.
Herpesviridae is a large family of DNA viruses divided into three subfamilies: Alpha-, Beta- and Gammaherpesvirinae. The process of herpesvirus transmission is mediated by a range of proteins, one of which is glycoprotein L (gL). Based on our analysis of the solved structures of HSV2 and EBV gH/gL complexes, we propose that Alphaherpesvirinae and Gammaherpesvirinae glycoprotein L and Betaherpesvirinae UL130 originate from chemokines. Herpes simplex virus type 2 gL and human cytomegalovirus homolog (UL130) adopt a novel C chemokine-like fold, while Epstein-Barr virus gL mimics a CC chemokine structure. Hence, it is possible that gL interface with specific chemokine receptors during the transmission of Herpesviridae. We conclude that the further understanding of the function of viral chemokine-like proteins in Herpesviridae infection may lead to development of novel prophylactic and therapeutic treatment.
doi:10.1186/1743-422X-10-1
PMCID: PMC3598415  PMID: 23279912
Herpesviridae; Glycoprotein L; GL; UL130; Chemokines; HCMV; HSV2; EBV
2.  Mapping the Substrate Binding Site of Phenylacetone Monooxygenase from Thermobifida fusca by Mutational Analysis▿† 
Applied and Environmental Microbiology  2011;77(16):5730-5738.
Baeyer-Villiger monooxygenases catalyze oxidations that are of interest for biocatalytic applications. Among these enzymes, phenylacetone monooxygenase (PAMO) from Thermobifida fusca is the only protein showing remarkable stability. While related enzymes often present a broad substrate scope, PAMO accepts only a limited number of substrates. Due to the absence of a substrate in the elucidated crystal structure of PAMO, the substrate binding site of this protein has not yet been defined. In this study, a structural model of cyclopentanone monooxygenase, which acts on a broad range of compounds, has been prepared and compared with the structure of PAMO. This revealed 15 amino acid positions in the active site of PAMO that may account for its relatively narrow substrate specificity. We designed and analyzed 30 single and multiple mutants in order to verify the role of these positions. Extensive substrate screening revealed several mutants that displayed increased activity and altered regio- or enantioselectivity in Baeyer-Villiger reactions and sulfoxidations. Further substrate profiling resulted in the identification of mutants with improved catalytic properties toward synthetically attractive compounds. Moreover, the thermostability of the mutants was not compromised in comparison to that of the wild-type enzyme. Our data demonstrate that the positions identified within the active site of PAMO, namely, V54, I67, Q152, and A435, contribute to the substrate specificity of this enzyme. These findings will aid in more dedicated and effective redesign of PAMO and related monooxygenases toward an expanded substrate scope.
doi:10.1128/AEM.00687-11
PMCID: PMC3165276  PMID: 21724896
3.  Distant homologs of anti-apoptotic factor HAX1 encode parvalbumin-like calcium binding proteins 
BMC Research Notes  2010;3:197.
Background
Apoptosis is a highly ordered and orchestrated multiphase process controlled by the numerous cellular and extra-cellular signals, which executes the programmed cell death via release of cytochrome c alterations in calcium signaling, caspase-dependent limited proteolysis and DNA fragmentation. Besides the general modifiers of apoptosis, several tissue-specific regulators of this process were identified including HAX1 (HS-1 associated protein X-1) - an anti-apoptotic factor active in myeloid cells. Although HAX1 was the subject of various experimental studies, the mechanisms of its action and a functional link connected with the regulation of apoptosis still remains highly speculative.
Findings
Here we provide the data which suggests that HAX1 may act as a regulator or as a sensor of calcium. On the basis of iterative similarity searches, we identified a set of distant homologs of HAX1 in insects. The applied fold recognition protocol gives us strong evidence that the distant insects' homologs of HAX1 are novel parvalbumin-like calcium binding proteins. Although the whole three EF-hands fold is not preserved in vertebrate our analysis suggests that there is an existence of a potential single EF-hand calcium binding site in HAX1. The molecular mechanism of its action remains to be identified, but the risen hypothesis easily translates into previously reported lines of various data on the HAX1 biology as well as, provides us a direct link to the regulation of apoptosis. Moreover, we also report that other family of myeloid specific apoptosis regulators - myeloid leukemia factors (MLF1, MLF2) share the homologous C-terminal domain and taxonomic distribution with HAX1.
Conclusions
Performed structural and active sites analyses gave new insights into mechanisms of HAX1 and MLF families in apoptosis process and suggested possible role of HAX1 in calcium-binding, still the analyses require further experimental verification.
doi:10.1186/1756-0500-3-197
PMCID: PMC2914655  PMID: 20633251
4.  Functional features of gene expression profiles differentiating gastrointestinal stromal tumours according to KIT mutations and expression 
BMC Cancer  2009;9:413.
Background
Gastrointestinal stromal tumours (GISTs) represent a heterogeneous group of tumours of mesenchymal origin characterized by gain-of-function mutations in KIT or PDGFRA of the type III receptor tyrosine kinase family. Although mutations in either receptor are thought to drive an early oncogenic event through similar pathways, two previous studies reported the mutation-specific gene expression profiles. However, their further conclusions were rather discordant. To clarify the molecular characteristics of differentially expressed genes according to GIST receptor mutations, we combined microarray-based analysis with detailed functional annotations.
Methods
Total RNA was isolated from 29 frozen gastric GISTs and processed for hybridization on GENECHIP® HG-U133 Plus 2.0 microarrays (Affymetrix). KIT and PDGFRA were analyzed by sequencing, while related mRNA levels were analyzed by quantitative RT-PCR.
Results
Fifteen and eleven tumours possessed mutations in KIT and PDGFRA, respectively; no mutation was found in three tumours. Gene expression analysis identified no discriminative profiles associated with clinical or pathological parameters, even though expression of hundreds of genes differentiated tumour receptor mutation and expression status. Functional features of genes differentially expressed between the two groups of GISTs suggested alterations in angiogenesis and G-protein-related and calcium signalling.
Conclusion
Our study has identified novel molecular elements likely to be involved in receptor-dependent GIST development and allowed confirmation of previously published results. These elements may be potential therapeutic targets and novel markers of KIT mutation status.
doi:10.1186/1471-2407-9-413
PMCID: PMC2794290  PMID: 19943934
5.  Comprehensive classification of nucleotidyltransferase fold proteins: identification of novel families and their representatives in human 
Nucleic Acids Research  2009;37(22):7701-7714.
This article presents a comprehensive review of large and highly diverse superfamily of nucleotidyltransferase fold proteins by providing a global picture about their evolutionary history, sequence-structure diversity and fulfilled functional roles. Using top-of-the-line homology detection method combined with transitive searches and fold recognition, we revised the realm of these superfamily in numerous databases of catalogued protein families and structures, and identified 10 new families of nucleotidyltransferase fold. These families include hundreds of previously uncharacterized and various poorly annotated proteins such as Fukutin/LICD, NFAT, FAM46, Mab-21 and NRAP. Some of these proteins seem to play novel important roles, not observed before for this superfamily, such as regulation of gene expression or choline incorporation into cell membrane. Importantly, within newly detected families we identified 25 novel superfamily members in human genome. Among these newly assigned members are proteins known to be involved in congenital muscular dystrophy, neurological diseases and retinal pigmentosa what sheds some new light on the molecular background of these genetic disorders. Twelve of new human nucleotidyltransferase fold proteins belong to Mab-21 family known to be involved in organogenesis and development. The determination of specific biological functions of these newly detected proteins remains a challenging task.
doi:10.1093/nar/gkp854
PMCID: PMC2794190  PMID: 19833706
6.  Molecular determinants archetypical to the phylum Nematoda 
BMC Genomics  2009;10:114.
Background
Nematoda diverged from other animals between 600–1,200 million years ago and has become one of the most diverse animal phyla on earth. Most nematodes are free-living animals, but many are parasites of plants and animals including humans, posing major ecological and economical challenges around the world.
Results
We investigated phylum-specific molecular characteristics in Nematoda by exploring over 214,000 polypeptides from 32 nematode species including 27 parasites. Over 50,000 nematode protein families were identified based on primary sequence, including ~10% with members from at least three different species. Nearly 1,600 of the multi-species families did not share homology to Pfam domains, including a total of 758 restricted to Nematoda. Majority of the 462 families that were conserved among both free-living and parasitic species contained members from multiple nematode clades, yet ~90% of the 296 parasite-specific families originated only from a single clade. Features of these protein families were revealed through extrapolation of essential functions from observed RNAi phenotypes in C. elegans, bioinformatics-based functional annotations, identification of distant homology based on protein folds, and prediction of expression at accessible nematode surfaces. In addition, we identified a group of nematode-restricted sequence features in energy-generating electron transfer complexes as potential targets for new chemicals with minimal or no toxicity to the host.
Conclusion
This study identified and characterized the molecular determinants that help in defining the phylum Nematoda, and therefore improved our understanding of nematode protein evolution and provided novel insights for the development of next generation parasite control strategies.
doi:10.1186/1471-2164-10-114
PMCID: PMC2666764  PMID: 19296854
7.  ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins 
Nucleic Acids Research  2003;31(13):3625-3630.
Multidomain proteins predominate in eukaryotic proteomes. Individual functions assigned to different sequence segments combine to create a complex function for the whole protein. While on-line resources are available for revealing globular domains in sequences, there has hitherto been no comprehensive collection of small functional sites/motifs comparable to the globular domain resources, yet these are as important for the function of multidomain proteins. Short linear peptide motifs are used for cell compartment targeting, protein–protein interaction, regulation by phosphorylation, acetylation, glycosylation and a host of other post-translational modifications. ELM, the Eukaryotic Linear Motif server at http://elm.eu.org/, is a new bioinformatics resource for investigating candidate short non-globular functional motifs in eukaryotic proteins, aiming to fill the void in bioinformatics tools. Sequence comparisons with short motifs are difficult to evaluate because the usual significance assessments are inappropriate. Therefore the server is implemented with several logical filters to eliminate false positives. Current filters are for cell compartment, globular domain clash and taxonomic range. In favourable cases, the filters can reduce the number of retained matches by an order of magnitude or more.
PMCID: PMC168952  PMID: 12824381
8.  ORFeus: detection of distant homology using sequence profiles and predicted secondary structure 
Nucleic Acids Research  2003;31(13):3804-3807.
ORFeus is a fully automated, sensitive protein sequence similarity search server available to the academic community via the Structure Prediction Meta Server (http://BioInfo.PL/Meta/). The goal of the development of ORFeus was to increase the sensitivity of the detection of distantly related protein families. Predicted secondary structure information was added to the information about sequence conservation and variability, a technique known from hybrid threading approaches. The accuracy of the meta profiles created this way is compared with profiles containing only sequence information and with the standard approach of aligning a single sequence with a profile. Additionally, the alignment of meta profiles is more sensitive in detecting remote homology between protein families than if aligning two sequence-only profiles or if aligning a profile with a sequence. The specificity of the alignment score is improved in the lower specificity range compared with the robust sequence-only profiles.
PMCID: PMC168911  PMID: 12824423

Results 1-8 (8)