Search tips
Search criteria

Results 1-25 (65)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
2.  The role of mitochondrial function in gold nanoparticle mediated radiosensitisation 
Cancer Nanotechnology  2014;5(1):5.
Gold nanoparticles (GNPs), have been demonstrated as effective preclinical radiosensitising agents in a range of cell models and radiation sources. These studies have also highlighted difficulty in predicted cellular radiobiological responses mediated by GNPs, based on physical assumptions alone, and therefore suggest a significant underlying biological component of response. This study aimed to determine the role of mitochondrial function in GNP radiosensitisation. Using assays of DNA damage and mitochondrial function through levels of oxidation and loss of membrane potential, we demonstrate a potential role of mitochondria as a central biological mechanism of GNP mediated radiosensitisation.
PMCID: PMC4164854  PMID: 25243023
Gold nanoparticles; Radiosensitisation; Radiation; Mitochondria; Oxidative stress
3.  Implementation of Ultrasonic Sensing for High Resolution Measurement of Binary Gas Mixture Fractions 
Sensors (Basel, Switzerland)  2014;14(6):11260-11276.
We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions.
PMCID: PMC4118389  PMID: 24961217
ultrasonic; binary gas analysis; leak detection
4.  Chronic Pain: Emerging Evidence for the Involvement of Epigenetics 
Neuron  2012;73(3):435-444.
Epigenetic processes, such as histone modifications and DNA methylation, have been associated with many neural functions including synaptic plasticity, learning, and memory. Here, we critically examine emerging evidence linking epigenetic mechanisms to the development or maintenance of chronic pain states. Although in its infancy, research in this area potentially unifies several pathophysiological processes underpinning abnormal pain processing and opens up a different avenue for the development of novel analgesics.
PMCID: PMC3996727  PMID: 22325197
5.  Genome-Wide Transcriptional Profiling of Skin and Dorsal Root Ganglia after Ultraviolet-B-Induced Inflammation 
PLoS ONE  2014;9(4):e93338.
Ultraviolet-B (UVB)-induced inflammation produces a dose-dependent mechanical and thermal hyperalgesia in both humans and rats, most likely via inflammatory mediators acting at the site of injury. Previous work has shown that the gene expression of cytokines and chemokines is positively correlated between species and that these factors can contribute to UVB-induced pain. In order to investigate other potential pain mediators in this model we used RNA-seq to perform genome-wide transcriptional profiling in both human and rat skin at the peak of hyperalgesia. In addition we have also measured transcriptional changes in the L4 and L5 DRG of the rat model. Our data show that UVB irradiation produces a large number of transcriptional changes in the skin: 2186 and 3888 genes are significantly dysregulated in human and rat skin, respectively. The most highly up-regulated genes in human skin feature those encoding cytokines (IL6 and IL24), chemokines (CCL3, CCL20, CXCL1, CXCL2, CXCL3 and CXCL5), the prostanoid synthesising enzyme COX-2 and members of the keratin gene family. Overall there was a strong positive and significant correlation in gene expression between the human and rat (R = 0.8022). In contrast to the skin, only 39 genes were significantly dysregulated in the rat L4 and L5 DRGs, the majority of which had small fold change values. Amongst the most up-regulated genes in DRG were REG3B, CCL2 and VGF. Overall, our data shows that numerous genes were up-regulated in UVB irradiated skin at the peak of hyperalgesia in both human and rats. Many of the top up-regulated genes were cytokines and chemokines, highlighting again their potential as pain mediators. However many other genes were also up-regulated and might play a role in UVB-induced hyperalgesia. In addition, the strong gene expression correlation between species re-emphasises the value of the UVB model as translational tool to study inflammatory pain.
PMCID: PMC3986071  PMID: 24732968
6.  Molecular Mechanisms Underlying the Enhanced Analgesic Effect of Oxycodone Compared to Morphine in Chemotherapy-Induced Neuropathic Pain 
PLoS ONE  2014;9(3):e91297.
Oxycodone is a μ-opioid receptor agonist, used for the treatment of a large variety of painful disorders. Several studies have reported that oxycodone is a more potent pain reliever than morphine, and that it improves the quality of life of patients. However, the neurobiological mechanisms underlying the therapeutic action of these two opioids are only partially understood. The aim of this study was to define the molecular changes underlying the long-lasting analgesic effects of oxycodone and morphine in an animal model of peripheral neuropathy induced by a chemotherapic agent, vincristine. Using a behavioural approach, we show that oxycodone maintains an optimal analgesic effect after chronic treatment, whereas the effect of morphine dies down. In addition, using DNA microarray technology on dorsal root ganglia, we provide evidence that the long-term analgesic effect of oxycodone is due to an up-regulation in GABAB receptor expression in sensory neurons. These receptors are transported to their central terminals within the dorsal horn, and subsequently reinforce a presynaptic inhibition, since only the long-lasting (and not acute) anti-hyperalgesic effect of oxycodone was abolished by intrathecal administration of a GABAB receptor antagonist; in contrast, the morphine effect was unaffected. Our study demonstrates that the GABAB receptor is functionally required for the alleviating effect of oxycodone in neuropathic pain condition, thus providing new insight into the molecular mechanisms underlying the sustained analgesic action of oxycodone.
PMCID: PMC3949760  PMID: 24618941
7.  Opening paths to novel analgesics: the role of potassium channels in chronic pain 
Trends in Neurosciences  2014;37(3):146-158.
•Potassium (K+) channels are crucial determinants of neuronal excitability.•Nerve injury or inflammation alters K+ channel activity in neurons of the pain pathway.•These changes can render neurons hyperexcitable and cause chronic pain.•Therapies targeting K+ channels may provide improved pain relief in these states.
Chronic pain is associated with abnormal excitability of the somatosensory system and remains poorly treated in the clinic. Potassium (K+) channels are crucial determinants of neuronal activity throughout the nervous system. Opening of these channels facilitates a hyperpolarizing K+ efflux across the plasma membrane that counteracts inward ion conductance and therefore limits neuronal excitability. Accumulating research has highlighted a prominent involvement of K+ channels in nociceptive processing, particularly in determining peripheral hyperexcitability. We review salient findings from expression, pharmacological, and genetic studies that have untangled a hitherto undervalued contribution of K+ channels in maladaptive pain signaling. These emerging data provide a framework to explain enigmatic pain syndromes and to design novel pharmacological treatments for these debilitating states.
PMCID: PMC3945816  PMID: 24461875
potassium channel; pain; dorsal root ganglia; pharmacotherapy
8.  Genes and epigenetic processes as prospective pain targets 
Genome Medicine  2013;5(2):12.
Chronic pain affects approximately one in five adults, resulting in a greatly reduced quality of life and a higher risk of developing co-morbidities such as depression. Available treatments often provide inadequate pain relief, but it is hoped that through deeper understanding of the molecular mechanisms underlying chronic pain states we can discover new and improved therapies. Although genetic research has flourished over the past decade and has identified many key genes in pain processing, the budding field of epigenetics promises to provide new insights and a more dynamic view of pain regulation. This review gives an overview of basic mechanisms and current therapies to treat pain, and discusses the clinical and preclinical evidence for the contribution of genetic and epigenetic factors, with a focus on how this knowledge can affect drug development.
PMCID: PMC3706821  PMID: 23409739
9.  A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat 
Molecular Pain  2014;10:7.
The past decade has seen an abundance of transcriptional profiling studies of preclinical models of persistent pain, predominantly employing microarray technology. In this study we directly compare exon microarrays to RNA-seq and investigate the ability of both platforms to detect differentially expressed genes following nerve injury using the L5 spinal nerve transection model of neuropathic pain. We also investigate the effects of increasing RNA-seq sequencing depth. Finally we take advantage of the “agnostic” approach of RNA-seq to discover areas of expression outside of annotated exons that show marked changes in expression following nerve injury.
RNA-seq and microarrays largely agree in terms of the genes called as differentially expressed. However, RNA-seq is able to interrogate a much larger proportion of the genome. It can also detect a greater number of differentially expressed genes than microarrays, across a wider range of fold changes and is able to assign a larger range of expression values to the genes it measures. The number of differentially expressed genes detected increases with sequencing depth. RNA-seq also allows the discovery of a number of genes displaying unusual and interesting patterns of non-exonic expression following nerve injury, an effect that cannot be detected using microarrays.
We recommend the use of RNA-seq for future high-throughput transcriptomic experiments in pain studies. RNA-seq allowed the identification of a larger number of putative candidate pain genes than microarrays and can also detect a wider range of expression values in a neuropathic pain model. In addition, RNA-seq can interrogate the whole genome regardless of prior annotations, being able to detect transcription from areas of the genome not currently annotated as exons. Some of these areas are differentially expressed following nerve injury, and may represent novel genes or isoforms. We also recommend the use of a high sequencing depth in order to detect differential expression for genes with low levels of expression.
PMCID: PMC4021616  PMID: 24472155
Whole-genome transcription profiling; Exon arrays; Microarrays; RNA-Sequencing; RNA-seq; Next generation sequencing; Spinal nerve transection; Nerve injury; Neuropathic pain; Differential gene expression
10.  Kv2 dysfunction after peripheral axotomy enhances sensory neuron responsiveness to sustained input☆ 
Experimental Neurology  2014;251(100):115-126.
Peripheral nerve injuries caused by trauma are associated with increased sensory neuron excitability and debilitating chronic pain symptoms. Axotomy-induced alterations in the function of ion channels are thought to largely underlie the pathophysiology of these phenotypes. Here, we characterise the mRNA distribution of Kv2 family members in rat dorsal root ganglia (DRG) and describe a link between Kv2 function and modulation of sensory neuron excitability. Kv2.1 and Kv2.2 were amply expressed in cells of all sizes, being particularly abundant in medium-large neurons also immunoreactive for neurofilament-200. Peripheral axotomy led to a rapid, robust and long-lasting transcriptional Kv2 downregulation in the DRG, correlated with the onset of mechanical and thermal hypersensitivity. The consequences of Kv2 loss-of-function were subsequently investigated in myelinated neurons using intracellular recordings on ex vivo DRG preparations. In naïve neurons, pharmacological Kv2.1/Kv2.2 inhibition by stromatoxin-1 (ScTx) resulted in shortening of action potential (AP) after-hyperpolarization (AHP). In contrast, ScTx application on axotomized neurons did not alter AHP duration, consistent with the injury-induced Kv2 downregulation. In accordance with a shortened AHP, ScTx treatment also reduced the refractory period and improved AP conduction to the cell soma during high frequency stimulation. These results suggest that Kv2 downregulation following traumatic nerve lesion facilitates greater fidelity of repetitive firing during prolonged input and thus normal Kv2 function is postulated to limit neuronal excitability. In summary, we have profiled Kv2 expression in sensory neurons and provide evidence for the contribution of Kv2 dysfunction in the generation of hyperexcitable phenotypes encountered in chronic pain states.
•Kv2.1 and Kv2.2 are expressed in rat dorsal root ganglion neurons.•Kv2 subunits are most abundant in myelinated sensory neurons.•Kv2.1 and Kv.2 subunits are downregulated in a traumatic nerve injury pain model.•Kv2 inhibition ex vivo allows higher firing rates during sustained stimulation.•We conclude that Kv2 channels contribute to limiting peripheral neuron excitability.
PMCID: PMC3898477  PMID: 24252178
AP, action potential; APD50, AP half width; AHPD50, after-hyperpolarization half width; ATF3, activating transcription factor 3; CGRP, calcitonin gene-related peptide; CNS, central nervous system; DRG, dorsal root ganglion; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; IB4, isolectin B4; IHC, immunohistochemistry; IR, input resistance; ISH, in situ hybridization; Kv channel, voltage-gated potassium channel; NF200, neurofilament 200; RP, refractory period; ScTx, stromatoxin-1; SNT, spinal nerve transection; Neuropathic pain; Potassium channel; Dorsal root ganglia
11.  Defining the nociceptor transcriptome 
Unbiased “omics” techniques, such as next generation RNA-sequencing, can provide entirely novel insights into biological systems. However, cellular heterogeneity presents a significant barrier to analysis and interpretation of these datasets. The neurons of the dorsal root ganglia (DRG) are an important model for studies of neuronal injury, regeneration and pain. The majority of investigators utilize a dissociated preparation of whole ganglia when studying cellular and molecular function. We demonstrate that the standard methods for producing these preparations gives a 10%-neuronal mixture of cells, with the remainder of cells constituting satellite glia and other non-neuronal cell types. Using a novel application of magnetic purification, we consistently obtain over 95% pure, viable neurons from adult tissue, significantly enriched for small diameter nociceptors expressing the voltage gated ion channel Nav1.8. Using genome-wide RNA-sequencing we compare the currently used (10% neuronal) and pure (95% nociceptor) preparations and find 920 genes enriched. This gives an unprecedented insight into the molecular composition of small nociceptive neurons in the DRG, potentially altering the interpretation of previous studies performed at the tissue level, and indicating a number of novel markers of this widely-studied population of cells. We anticipate that the ease of use, affordability and speed of this technique will see it become widely adopted, delivering a greatly improved capacity to study the roles of nociceptors in health and disease.
PMCID: PMC4227287  PMID: 25426020
pain; nociceptors; nociception; somatosensation; dorsal root ganglion; RNA-sequencing; peripheral nervous system; regeneration
12.  Synthesis of Lipid Mediators during UVB-Induced Inflammatory Hyperalgesia in Rats and Mice 
PLoS ONE  2013;8(12):e81228.
Peripheral sensitization during inflammatory pain is mediated by a variety of endogenous proalgesic mediators including a number of oxidized lipids, some of which serve endogenous modulators of sensory TRP-channels. These lipids are eicosanoids of the arachidonic acid and linoleic acid pathway, as well as lysophophatidic acids (LPAs). However, their regulation pattern during inflammatory pain and their contribution to peripheral sensitization is still unclear. Here, we used the UVB-model for inflammatory pain to investigate alterations of lipid concentrations at the site of inflammation, the dorsal root ganglia (DRGs) as well as the spinal dorsal horn and quantified 21 lipid species from five different lipid families at the peak of inflammation 48 hours post irradiation. We found that known proinflammatory lipids as well as lipids with unknown roles in inflammatory pain to be strongly increased in the skin, whereas surprisingly little changes of lipid levels were seen in DRGs or the dorsal horn. Importantly, although there are profound differences between the number of cytochrome (CYP) genes between mice and rats, CYP-derived lipids were regulated similarly in both species. Since TRPV1 agonists such as LPA 18∶1, 9- and 13-HODE, 5- and 12-HETE were elevated in the skin, they may contribute to thermal hyperalgesia and mechanical allodynia during UVB-induced inflammatory pain. These results may explain why some studies show relatively weak analgesic effects of cyclooxygenase inhibitors in UVB-induced skin inflammation, as they do not inhibit synthesis of other proalgesic lipids such as LPA 18∶1, 9-and 13-HODE and HETEs.
PMCID: PMC3857181  PMID: 24349046
13.  PainNetworks: A web-based resource for the visualisation of pain-related genes in the context of their network associations 
Pain  2013;154(12):2586.e1-2586.e12.
Hundreds of genes are proposed to contribute to nociception and pain perception. Historically, most studies of pain-related genes have examined them in isolation or alongside a handful of other genes. More recently the use of systems biology techniques has enabled us to study genes in the context of the biological pathways and networks in which they operate.
Here we describe a Web-based resource, available at It integrates interaction data from various public databases with information on known pain genes taken from several sources (eg, The Pain Genes Database) and allows the user to examine a gene (or set of genes) of interest alongside known interaction partners. This information is displayed by the resource in the form of a network.
The user can enrich these networks by using data from pain-focused gene expression studies to highlight genes that change expression in a given experiment or pairs of genes showing correlated expression patterns across different experiments. Genes in the networks are annotated in several ways including biological function and drug binding.
The Web site can be used to find out more about a gene of interest by looking at the function of its interaction partners. It can also be used to interpret the results of a functional genomics experiment by revealing putative novel pain-related genes that have similar expression patterns to known pain-related genes and by ranking genes according to their network connections with known pain genes.
We expect this resource to grow over time and become a valuable asset to the pain community.
PMCID: PMC3863956  PMID: 24036287
Systems biology; Protein–protein interactions; Protein interaction network; Web-based resource; Pain genes; Microarrays
14.  A multifaceted strategy using mobile technology to assist rural primary healthcare doctors and frontline health workers in cardiovascular disease risk management: protocol for the SMARTHealth India cluster randomised controlled trial 
Blood Pressure related disease affected 118 million people in India in the year 2000; this figure will double by 2025. Around one in four adults in rural India have hypertension, and of those, only a minority are accessing appropriate care. Health systems in India face substantial challenges to meet these gaps in care, and innovative solutions are needed.
We hypothesise that a multifaceted intervention involving capacity strengthening of primary healthcare doctors and non-physician healthcare workers through use of a mobile device-based clinical decision support system will result in improved blood pressure control for individuals at high risk of a cardiovascular disease event when compared with usual healthcare. This intervention will be implemented as a stepped wedge, cluster randomised controlled trial in 18 primary health centres and 54 villages in rural Andhra Pradesh involving adults aged ≥40 years at high cardiovascular disease event risk (approximately 15,000 people). Cardiovascular disease event risk will be calculated based on World Health Organisation/International Society of Hypertension’s region-specific risk charts. Cluster randomisation will occur at the level of the primary health centres. Outcome analyses will be conducted blinded to intervention allocation.
Expected outcomes
The primary study outcome is the difference in the proportion of people meeting guideline-recommended blood pressure targets in the intervention period vs. the control period. Secondary outcomes include mean reduction in blood pressure levels; change in other cardiovascular disease risk factors, including body mass index, current smoking, reported healthy eating habits, and reported physical activity levels; self-reported use of blood pressure and other cardiovascular medicines; quality of life (using the EQ-5D); and cardiovascular disease events (using hospitalisation data). Trial outcomes will be accompanied by detailed process and economic evaluations.
The findings are likely to inform policy on a scalable strategy to overcome entrenched inequities in access to effective healthcare for under-served populations in low and middle income country settings.
Trial registration
Clinical Trial Registry India CTRI/2013/06/003753.
PMCID: PMC4222027  PMID: 24274431
Blood pressure; Capacity strengthening; Clinical decision support system; Healthcare workers; Physicians; India; Implementation
15.  Probing Functional Properties of Nociceptive Axons Using a Microfluidic Culture System 
PLoS ONE  2013;8(11):e80722.
Pathological changes in axonal function are integral features of many neurological disorders, yet our knowledge of the molecular basis of axonal dysfunction remains limited. Microfluidic chambers (MFCs) can provide unique insight into the axonal compartment independent of the soma. Here we demonstrate how an MFC based cell culture system can be readily adapted for the study of axonal function in vitro. We illustrate the ease and versatility to assay electrogenesis and conduction of action potentials (APs) in naïve, damaged or sensitized DRG axons using calcium imaging at the soma for pharmacological screening or patch-clamp electrophysiology for detailed biophysical characterisation. To demonstrate the adaptability of the system, we report by way of example functional changes in nociceptor axons following sensitization by neurotrophins and axotomy in vitro. We show that NGF can locally sensitize axonal responses to capsaicin, independent of the soma. Axotomizing neurons in MFC results in a significant increase in the proportion of neurons that respond to axonal stimulation, and interestingly leads to accumulation of Nav1.8 channels in regenerating axons. Axotomy also augmented AP amplitude following axotomy and altered activation thresholds in a subpopulation of regenerating axons. We further show how the system can readily be used to study modulation of axonal function by non-neuronal cells such as keratinocytes. Hence we describe a novel in vitro platform for the study of axonal function and a surrogate model for nerve injury and sensitization.
PMCID: PMC3835735  PMID: 24278311
16.  Chemokine expression in peripheral tissues from the Monosodium Iodoacetate model of chronic joint pain 
Molecular Pain  2013;9:57.
Chronic pain arising from degenerative diseases of the joint such as osteoarthritis (OA) has a strong peripheral component which is likely to be mediator driven. Current treatments which reduce the production of such mediators i.e. non-steroidal anti-inflammatory drugs (NSAIDs), can help to lessen pain in OA patients. However, this is not always the case and complete pain relief is rarely achieved, suggesting that additional unidentified mediators play a role. Here we have investigated the notion that chemokines might act as such pain mediators in OA.
Using the monosodium iodoacetate (MIA) model of chronic joint pain the expression of over 90 different inflammatory mediators, mainly cytokines and chemokines, were measured in tissues taken from the femorotibial joint (cartilage, subchondral bone, fat pad) using custom-made quantitative real-time polymerase chain reaction (qPCR) array cards. At both the day 3 and 14 time points, numerous inflammatory mediators were significantly up-regulated in these tissues, although it was clear that the largest transcriptional dysregulation occurred in the cartilage. Using individual qPCR to measure immune cell markers, a significant infiltration of macrophages was measured in the cartilage and fat pad at day 3. Neutrophil infiltration was also measured in the fat pad at the same time point, but no infiltration was observed at day 14. Combination of mRNA expression data from different time points and tissues identified the chemokines, CCL2, 7 and 9 as being consistently up-regulated. The overall increase in CCL2 expression was also measured at the protein level.
Chemokines in general and CCL2, 7 and 9 in particular, represent promising targets for further studies into the identification of new pain mediators in chronic joint pain.
PMCID: PMC3835139  PMID: 24206615
Pain; Chemokine; Osteoarthritis; Monosodium iodoacetate; Macrophages; Neutrophils
17.  HDAC inhibitors attenuate the development of hypersensitivity in models of neuropathic pain 
Pain  2013;154(9):1668-1679.
Intrathecal delivery of histone deacetylase inhibitors ameliorates hypersensitivity in models of neuropathic pain. This effect may be mediated at the level of the spinal cord through inhibition of HDAC1 function.
Histone deacetylase inhibitors (HDACIs) interfere with the epigenetic process of histone acetylation and are known to have analgesic properties in models of chronic inflammatory pain. The aim of this study was to determine whether these compounds could also affect neuropathic pain. Different class I HDACIs were delivered intrathecally into rat spinal cord in models of traumatic nerve injury and antiretroviral drug–induced peripheral neuropathy (stavudine, d4T). Mechanical and thermal hypersensitivity was attenuated by 40% to 50% as a result of HDACI treatment, but only if started before any insult. The drugs globally increased histone acetylation in the spinal cord, but appeared to have no measurable effects in relevant dorsal root ganglia in this treatment paradigm, suggesting that any potential mechanism should be sought in the central nervous system. Microarray analysis of dorsal cord RNA revealed the signature of the specific compound used (MS-275) and suggested that its main effect was mediated through HDAC1. Taken together, these data support a role for histone acetylation in the emergence of neuropathic pain.
PMCID: PMC3763368  PMID: 23693161
Histone deacetylase; Histone deacetylase inhibitors; Neuropathic pain
18.  Sensory Neuron Downregulation of the Kv9.1 Potassium Channel Subunit Mediates Neuropathic Pain following Nerve Injury 
Chronic neuropathic pain affects millions of individuals worldwide, is typically long-lasting, and remains poorly treated with existing therapies. Neuropathic pain arising from peripheral nerve lesions is known to be dependent on the emergence of spontaneous and evoked hyperexcitability in damaged nerves. Here, we report that the potassium channel subunit Kv9.1 is expressed in myelinated sensory neurons, but is absent from small unmyelinated neurons. Kv9.1 expression was strongly and rapidly downregulated following axotomy, with a time course that matches the development of spontaneous activity and pain hypersensitivity in animal models. Interestingly, siRNA-mediated knock-down of Kv9.1 in naive rats led to neuropathic pain behaviors. Diminished Kv9.1 function also augmented myelinated sensory neuron excitability, manifested as spontaneous firing, hyper-responsiveness to stimulation, and persistent after-discharge. Intracellular recordings from ex vivo dorsal root ganglion preparations revealed that Kv9.1 knock-down was linked to lowered firing thresholds and increased firing rates under physiologically relevant conditions of extracellular potassium accumulation during prolonged activity. Similar neurophysiological changes were detected in animals subjected to traumatic nerve injury and provide an explanation for neuropathic pain symptoms, including poorly understood conditions such as hyperpathia and paresthesias. In summary, our results demonstrate that Kv9.1 dysfunction leads to spontaneous and evoked neuronal hyperexcitability in myelinated fibers, coupled with development of neuropathic pain behaviors.
PMCID: PMC3713313  PMID: 23197740
19.  Axonal neuregulin 1 is a rate limiting but not essential factor for nerve remyelination 
Brain  2013;136(7):2279-2297.
Neuregulin 1 acts as an axonal signal that regulates multiple aspects of Schwann cell development including the survival and migration of Schwann cell precursors, the ensheathment of axons and subsequent elaboration of the myelin sheath. To examine the role of this factor in remyelination and repair following nerve injury, we ablated neuregulin 1 in the adult nervous system using a tamoxifen inducible Cre recombinase transgenic mouse system. The loss of neuregulin 1 impaired remyelination after nerve crush, but did not affect Schwann cell proliferation associated with Wallerian degeneration or axon regeneration or the clearance of myelin debris by macrophages. Myelination changes were most marked at 10 days after injury but still apparent at 2 months post-crush. Transcriptional analysis demonstrated reduced expression of myelin-related genes during nerve repair in animals lacking neuregulin 1. We also studied repair over a prolonged time course in a more severe injury model, sciatic nerve transection and reanastamosis. In the neuregulin 1 mutant mice, remyelination was again impaired 2 months after nerve transection and reanastamosis. However, by 3 months post-injury axons lacking neuregulin 1 were effectively remyelinated and virtually indistinguishable from control. Neuregulin 1 signalling is therefore an important factor in nerve repair regulating the rate of remyelination and functional recovery at early phases following injury. In contrast to development, however, the determination of myelination fate following nerve injury is not dependent on axonal neuregulin 1 expression. In the early phase following injury, axonal neuregulin 1 therefore promotes nerve repair, but at late stages other signalling pathways appear to compensate.
PMCID: PMC3692042  PMID: 23801741
injury; Nrg1; regeneration; remyelination; Schwann
20.  Inhibition of the PLP-dependent enzyme serine palmitoyltransferase by cycloserine: evidence for a novel decarboxylative mechanism of inactivation 
Molecular bioSystems  2010;6(9):1682-1693.
Cycloserine (CS, 4-amino-3-isoxazolidone) is a cyclic amino acid mimic that is known to inhibit many essential pyridoxal 5′-phosphate (PLP)-dependent enzymes. Two CS enantiomers are known; d-cycloserine (DCS, also known as Seromycin), is a natural product that is used to treat resistant Mycobacterium tuberculosis infections as well as neurological disorders since it is a potent NMDA receptor agonist, and l-cycloserine (LCS), is a synthetic enantiomer whose usefulness as a drug has been hampered by its inherent toxicity arising through inhibition of sphingolipid metabolism. Previous studies on various PLP-dependent enzymes revealed a common mechanism of inhibition by both enantiomers of CS; the PLP cofactor is disabled by forming a stable 3-hydroxyisoxazole/pyridoxamine 5′-phosphate (PMP) adduct at the active site where the cycloserine ring remains intact. Here we describe a novel mechanism of CS inactivation of the PLP-dependent enzyme serine palmitoyltransferase (SPT) from Sphingomonas paucimobilis. SPT catalyses the condensation of l-serine and palmitoyl-CoA, the first step in the de novo sphingolipid biosynthetic pathway. We have used a range of kinetic, spectroscopic and structural techniques to postulate that both LCS and DCS inactivate SPT by transamination to form a free pyridoxamine 5′-phosphate (PMP) and β-aminooxyacetaldehyde that remain bound at the active site. We suggest this occurs by ring opening of the cycloserine ring followed by decarboxylation. Enzyme kinetics show that inhibition is reversed by incubation with excess PLP and that LCS is a more effective SPT inhibitor than DCS. UV-visible spectroscopic data, combined with site-directed mutagenesis, suggest that a mobile Arg378 residue is involved in cycloserine inactivation of SPT.
PMCID: PMC3670083  PMID: 20445930
21.  Characterisation and mechanisms of bradykinin-evoked pain in man using iontophoresis 
Pain  2013;154(6):782-792.
An optimised model was developed to investigate in vivo mechanics of bradykinin and analogues in human skin using iontophoresis and an inflammatory model.
Bradykinin (BK) is an inflammatory mediator that can evoke oedema and vasodilatation, and is a potent algogen signalling via the B1 and B2 G-protein coupled receptors. In naïve skin, BK is effective via constitutively expressed B2 receptors (B2R), while B1 receptors (B1R) are purported to be upregulated by inflammation. The aim of this investigation was to optimise BK delivery to investigate the algesic effects of BK and how these are modulated by inflammation. BK iontophoresis evoked dose- and temperature-dependent pain and neurogenic erythema, as well as thermal and mechanical hyperalgesia (P < 0.001 vs saline control). To differentiate the direct effects of BK from indirect effects mediated by histamine released from mast cells (MCs), skin was pretreated with compound 4880 to degranulate the MCs prior to BK challenge. The early phase of BK-evoked pain was reduced in degranulated skin (P < 0.001), while thermal and mechanical sensitisation, wheal, and flare were still evident. In contrast to BK, the B1R selective agonist des-Arg9-BK failed to induce pain or sensitise naïve skin. However, following skin inflammation induced by ultraviolet B irradiation, this compound produced a robust pain response. We have optimised a versatile experimental model by which BK and its analogues can be administered to human skin. We have found that there is an early phase of BK-induced pain which partly depends on the release of inflammatory mediators by MCs; however, subsequent hyperalgesia is not dependent on MC degranulation. In naïve skin, B2R signaling predominates, however, cutaneous inflammation results in enhanced B1R responses.
PMCID: PMC3919168  PMID: 23422725
Pain; Bradykinin; Des-Arg9-bradykinin; Iontophoresis; Mast cell
23.  A Kinetic-Based Model of Radiation-Induced Intercellular Signalling 
PLoS ONE  2013;8(1):e54526.
It is now widely accepted that intercellular communication can cause significant variations in cellular responses to genotoxic stress. The radiation-induced bystander effect is a prime example of this effect, where cells shielded from radiation exposure see a significant reduction in survival when cultured with irradiated cells. However, there is a lack of robust, quantitative models of this effect which are widely applicable. In this work, we present a novel mathematical model of radiation-induced intercellular signalling which incorporates signal production and response kinetics together with the effects of direct irradiation, and test it against published data sets, including modulated field exposures. This model suggests that these so-called “bystander” effects play a significant role in determining cellular survival, even in directly irradiated populations, meaning that the inclusion of intercellular communication may be essential to produce robust models of radio-biological outcomes in clinically relevant in vivo situations.
PMCID: PMC3551852  PMID: 23349919
24.  Arthroplasty options in femoral-neck fracture: answers from the national registries 
International Orthopaedics  2011;36(1):1-8.
Femoral-neck fracture in the elderly population is a problem that demands the attention of the orthopaedic community as life expectancy continues to increase. There are several different treatment options in use, and this variety in and of itself indicates the absence of an ideal single treatment option. Recent debate has focussed on the probable superiority of total hip arthroplasty (THA) over hemiarthroplasty for femoral-neck fracture. Clinical trials and systematic reviews of such trials have not provided a convincing answer to this question.
We analysed data from national registries evaluating prosthetic replacements for femoral-neck fracture in the elderly. We compared revision and reoperation rates of hemiarthroplasty and THA, analysed the prognostic variables that influenced implant survival and the major causes of failure.
Data from the Australian and Italian registries indicate that THA has an increased revision rate compared with bipolar hemiarthroplasty in femoral-neck fracture in the elderly. The registries identify that age over 75 years and the use of the anterior surgical approach are associated with better survivorship in patients who have a hemiarthroplasty. Cemented fixation of the femoral stem in hemiarthroplasty and THA is supported by registry data. Acetabular erosion accounted for a very low percentage of hemiarthroplasty revisions and reoperations.
Our review of data from national registries supports the continued use of bipolar hemiarthroplasty in femoral-neck fracture in the elderly and identifies age, method of fixation and surgical approach as important prognostic variables in determining implant survival.
PMCID: PMC3251685  PMID: 21931966
25.  The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery 
A focused strategy has been directed towards the structural characterization of selected proteins from the bacterial pathogen P. aeruginosa. The objective is to exploit the resulting structural data, in combination with ligand-binding studies, and to assess the potential of these proteins for early-stage antimicrobial drug discovery.
Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns.
PMCID: PMC3539698  PMID: 23295481
protein structure; Gram-negative bacteria; Pseudomonas aeruginosa; infectious diseases; structure-based inhibitor design

Results 1-25 (65)