PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (61)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  TbGT8 is a bifunctional glycosyltransferase that elaborates N-linked glycans on a protein phosphatase AcP115 and a GPI-anchor modifying glycan in Trypanosoma brucei 
Parasitology International  2014;63(3):513-518.
The procyclic form of Trypanosoma brucei expresses procyclin surface glycoproteins with unusual glycosylphosphatidylinositol-anchor side chain structures that contain branched N-acetyllactosamine and lacto-N-biose units. The glycosyltransferase TbGT8 is involved in the synthesis of the branched side chain through its UDP-GlcNAc: βGal β1-3N-acetylglucosaminyltransferase activity. Here, we explored the role of TbGT8 in the mammalian bloodstream form of the parasite with a tetracycline-inducible conditional null T. brucei mutant for TbGT8. Under non-permissive conditions, the mutant showed significantly reduced binding to tomato lectin, which recognizes poly-N-acetyllactosamine-containing glycans. Lectin pull-down assays revealed differences between the wild type and TbGT8 null-mutant T. brucei, notably the absence of a broad protein band with an approximate molecular weight of 110 kDa in the mutant lysate. Proteomic analysis revealed that the band contained several glycoproteins, including the acidic ecto-protein phosphatase AcP115, a stage-specific glycoprotein in the bloodstream form of T. brucei. Western blotting with an anti-AcP115 antibody revealed that AcP115 was approximately 10 kDa smaller in the mutant. Enzymatic de-N-glycosylation demonstrated that the underlying protein cores were the same, suggesting that the 10-kDa difference was due to differences in N-linked glycans. Immunofluorescence microscopy revealed the colocalization of hemagglutinin epitope-tagged TbGT8 and the Golgi-associated protein GRASP. These data suggest that TbGT8 is involved in the construction of complex poly-N-acetyllactosamine-containing type N-linked and GPI-linked glycans in the Golgi of the bloodstream and procyclic parasite forms, respectively.
Graphical abstract
Highlights
•TbGT8 is involved in N-linked glycan synthesis in the bloodstream form.•AcP115 is a target glycoprotein of TbGT8-dependent glycan processing.•TbGT8 is localized in the Golgi and modified by N-linked glycan(s).
doi:10.1016/j.parint.2014.01.007
PMCID: PMC4003530  PMID: 24508870
CBB, Coomassie brilliant blue; cKO, conditional double knockout; FP, flagellar pocket and lysosome/endosome system; GlcNAc, N-acetylglucosamine; GPI, glycosylphosphatidylinositol; HA, hemagglutinin epitope; LacNAc, N-acetyllactosamine; PBS, phosphate buffered saline; PNGase, peptide N-glycosidase; VSG, variant surface glycoprotein; Glycosyltransferase; Trypanosoma brucei; N-linked glycan; GPI-anchor; Tomato lectin
2.  Fragment screening reveals salicylic hydroxamic acid as an inhibitor of Trypanosoma brucei GPI GlcNAc-PI de-N-acetylase 
Carbohydrate Research  2014;387(100):54-58.
Graphical abstract
Highlights
•First non-substrate analogue inhibitor of the trypanosome GPI pathway.•Active against recombinant enzyme and cell-free system.•Low molecular weight and good ligand efficiency.
The zinc-metalloenzyme GlcNAc-PI de-N-acetylase is essential for the biosynthesis of mature GPI anchors and has been genetically validated in the bloodstream form of Trypanosoma brucei, which causes African sleeping sickness. We screened a focused library of zinc-binding fragments and identified salicylic hydroxamic acid as a GlcNAc-PI de-N-acetylase inhibitor with high ligand efficiency. This is the first small molecule inhibitor reported for the trypanosome GPI pathway. Investigating the structure activity relationship revealed that hydroxamic acid and 2-OH are essential for potency, and that substitution is tolerated at the 4- and 5-positions.
doi:10.1016/j.carres.2013.12.016
PMCID: PMC3991331  PMID: 24589444
GPI; Trypanosoma brucei; Hydroxamic acid; Inhibitor; N-Deacetylase
3.  GPI-anchored Proteins and Free GPI Glycolipids of Procyclic Form Trypanosoma brucei Are Nonessential for Growth, Are Required for Colonization of the Tsetse Fly, and Are Not the Only Components of the Surface Coat 
Molecular Biology of the Cell  2006;17(12):5265-5274.
The procyclic form of Trypanosoma brucei exists in the midgut of the tsetse fly. The current model of its surface glycocalyx is an array of rod-like procyclin glycoproteins with glycosylphosphatidylinositol (GPI) anchors carrying sialylated poly-N-acetyllactosamine side chains interspersed with smaller sialylated poly-N-acetyllactosamine–containing free GPI glycolipids. Mutants for TbGPI12, deficient in the second step of GPI biosynthesis, were devoid of cell surface procyclins and poly-N-acetyllactosamine–containing free GPI glycolipids. This major disruption to their surface architecture severely impaired their ability to colonize tsetse fly midguts but, surprisingly, had no effect on their morphology and growth characteristics in vitro. Transmission electron microscopy showed that the mutants retained a cell surface glycocalyx. This structure, and the viability of the mutants in vitro, prompted us to look for non-GPI–anchored parasite molecules and/or the adsorption of serum components. Neither were apparent from cell surface biotinylation experiments but [3H]glucosamine biosynthetic labeling revealed a group of previously unidentified high apparent molecular weight glycoconjugates that might contribute to the surface coat. While characterizing GlcNAc-PI that accumulates in the TbGPI12 mutant, we observed inositolphosphoceramides for the first time in this organism.
doi:10.1091/mbc.E06-08-0702
PMCID: PMC1679689  PMID: 17035628
4.  Investigation of copper(II) tetrafluoroborate catalysed epoxide opening 
Tetrahedron Letters  2011;52(52):7091-7094.
Graphical abstract
We report the extension of the copper(II) tetrafluoroborate catalysed opening of epoxides with alcohols to include a wider variety of alcohols, a range of solvents and a method to purify the products from the reaction.
doi:10.1016/j.tetlet.2011.10.090
PMCID: PMC3314918  PMID: 22505782
Epoxide; Copper(II) tetrafluoroborate; Lewis acid; Alcohols
5.  Synthesis of potential metal-binding group compounds to examine the zinc dependency of the GPI de-N-acetylase metalloenzyme in Trypanosoma brucei 
Carbohydrate Research  2011;346(6):708-714.
Graphical abstract
A small zinc-binding group (ZBG) library of deoxy-2-C-branched-monosaccharides, for example, 1,5-anhydroglucitols, consisting of either monodentate ligand binding carboxylic acids or bidentate ligand binding hydroxamic acids, were prepared to assess the zinc affinity of the putative metalloenzyme 2-acetamido-2-deoxy-α-d-glucopyranosyl-(1→6)-phosphatidylinositol de-N-acetylase (EC 3.5.1.89) of glycosylphosphatidylinositol biosynthesis. The N-ureido thioglucoside was also synthesised and added to the ZBG library because a previous N-ureido analogue, synthesised by us, had inhibitory activity against the aforementioned de-N-acetylase, presumably via the N-ureido motif.
doi:10.1016/j.carres.2011.02.004
PMCID: PMC3125106  PMID: 21377660
Glycosylphosphatidylinositol (GPI) biosynthesis; Zinc metalloenzyme inhibitor; Zinc-binding group; Branched monosaccharides, Phosphatidylinositol de-N-acetylase
6.  Glycotyping of Trypanosoma brucei variant surface glycoprotein MITat1.8 
Graphical abstract
VSG MITat1.8 was characterized with respect to its N-glycosylation, GPI anchor structure and found to be a disulfide-linked homodimer.
Following a switch from variant surface glycoprotein MITat1.4 to variant surface glycoprotein MITat1.8 expression by Lister strain 427 Trypanosoma brucei brucei parasites, the latter uncharacterized variant surface glycoprotein was analysed. Variant surface glycoprotein MITat1.8 was found to be a disulphide-linked homodimer, containing a complex N-linked glycan at Asn58 and a glycosylphosphatidylinositol membrane anchor attached to Asp419. Mass spectrometric analyses demonstrated that the N-glycan is exclusively Galβ1-4GlcNAcβ1-2Manα1-3(Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc and that the conserved Man3GlcN-myo-inositol glycosylphosphatidylinositol anchor glycan core is substituted with an average of 4 hexose, most likely galactose, residues. The presence of a complex N-glycan at Asn58 is consistent with the relatively acidic environment of the Asn58 N-glycosylation sequon, that predicts N-glycosylation by T. brucei oligosaccharyltransferase TbSTT3A with a Man5GlcNAc2 structure destined for processing to a paucimannose and/or complex N-glycan (Izquierdo L, Schulz B, Rodrigues JA et al. EMBO J 2009;28:2650–61 [12]).
doi:10.1016/j.molbiopara.2010.06.007
PMCID: PMC2935967  PMID: 20558211
Trypanosoma brucei; N-linked oligosaccharides; N-glycosylation; Glycosylphosphatidylinositol; GPI; Mass spectrometry
7.  Prophossi: automating expert validation of phosphopeptide–spectrum matches from tandem mass spectrometry 
Bioinformatics  2010;26(17):2153-2159.
Motivation: Complex patterns of protein phosphorylation mediate many cellular processes. Tandem mass spectrometry (MS/MS) is a powerful tool for identifying these post-translational modifications. In high-throughput experiments, mass spectrometry database search engines, such as MASCOT provide a ranked list of peptide identifications based on hundreds of thousands of MS/MS spectra obtained in a mass spectrometry experiment. These search results are not in themselves sufficient for confident assignment of phosphorylation sites as identification of characteristic mass differences requires time-consuming manual assessment of the spectra by an experienced analyst. The time required for manual assessment has previously rendered high-throughput confident assignment of phosphorylation sites challenging.
Results: We have developed a knowledge base of criteria, which replicate expert assessment, allowing more than half of cases to be automatically validated and site assignments verified with a high degree of confidence. This was assessed by comparing automated spectral interpretation with careful manual examination of the assignments for 501 peptides above the 1% false discovery rate (FDR) threshold corresponding to 259 putative phosphorylation sites in 74 proteins of the Trypanosoma brucei proteome. Despite this stringent approach, we are able to validate 80 of the 91 phosphorylation sites (88%) positively identified by manual examination of the spectra used for the MASCOT searches with a FDR < 15%.
Conclusions:High-throughput computational analysis can provide a viable second stage validation of primary mass spectrometry database search results. Such validation gives rapid access to a systems level overview of protein phosphorylation in the experiment under investigation.
Availability: A GPL licensed software implementation in Perl for analysis and spectrum annotation is available in the supplementary material and a web server can be assessed online at http://www.compbio.dundee.ac.uk/prophossi
Contact: d.m.a.martin@dundee.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btq341
PMCID: PMC2922888  PMID: 20651112
8.  Synthetic glycovaccine protects against the bite of Leishmania-infected sand flies 
The Journal of infectious diseases  2006;194(4):512-518.
Leishmaniasis is a vector-borne disease transmitted to human and other mammalian hosts by sand fly bite. Here we show that immunization with Leishmania mexicana promastigote secretory gel (PSG) or a chemically defined synthetic glycovaccine containing the glycans found in L. mexicana PSG can both provide significant protection against challenge by the bite of infected sand flies. Only the glycan from L. mexicana was protective, those found in other species did not protect against L. mexicana infection. Further, neither PSG nor the glycovaccine protected against artificial needle challenge, which is traditionally used in antileishmanial vaccine development. Conversely, an antigen preparation that was effective against needle challenge offered no protection against sand fly bite. These findings provide a new target for Leishmania vaccine development and demonstrate the critical role of the vector in the evaluation of candidate vaccines for leishmaniasis and other vector-borne diseases.
doi:10.1086/505584
PMCID: PMC2839923  PMID: 16845636
leishmaniasis; vaccine; sand fly; promastigote secretory gel
9.  Application of electrospray mass spectrometry to the structural determination of glycosylphosphatidylinositol membrane anchors 
Glycobiology  2010;20(5):576-585.
The addition of glycosylphosphatidylinositol (GPI) anchors to proteins is an important posttranslational modification in eukaryotic cells. The complete structural elucidation of GPI anchors is a complex process that requires relatively large amounts of starting material. In this paper, we assess the degree of structural information that can be obtained by applying electrospray mass spectrometry and tandem mass spectrometry to permethylated GPI glycans prepared from a well-characterized GPI-anchored glycoprotein, the variant surface glycoprotein from Trypanosoma brucei. All GPI glycans contain a non-N-acetylated glucosamine residue, and permethylation leads to the formation of a fixed positive charge on the glycans, in the form of a quaternary amine. The permethylated glycans were detected as [M +- Na]2+- ions, and tandem mass spectrometry of these ions produced substantial, albeit incomplete, structural information on the branching patterns and linkage types for various GPI glycoforms of the variant surface glycoprotein.
doi:10.1093/glycob/cwq007
PMCID: PMC2850939  PMID: 20100693
glycosylphosphatidylinositol; GPI anchor; mass spectrometry; Trypanosoma brucei; variant surface glycoprotein
10.  Myristoyl-CoA:protein N-myristoyltransferase depletion in trypanosomes causes avirulence and endocytic defects 
The enzyme myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyses the co-translational covalent attachment of the fatty acid myristate to the N-terminus of target proteins. NMT is known to be essential for viability in Trypanosoma brucei and Leishmania major. Here we describe phenotypic analysis of T. brucei bloodstream form cells following knockdown of NMT expression by tetracycline-inducible RNA interference. Cell death occurs from 72 h post-induction, with approximately 50% of cells displaying a defect in endocytic uptake by this time. The majority of these induced cells do not have an enlarged flagellar pocket typical of a block in endocytosis but vesicle accumulation around the flagellar pocket indicates a defect in vesicular progression following endocytic fusion. Induced parasites have a wild-type or slightly enlarged Golgi apparatus, unlike the phenotype of cells with reduced expression of a major N-myristoylated protein, ARL1. Critically we show that following NMT knockdown, T. brucei bloodstream form cells are unable to establish an infection in a mouse model, therefore providing further validation of this enzyme as a target for drug development.
doi:10.1016/j.molbiopara.2009.09.006
PMCID: PMC2789243  PMID: 19782106
Arf, ADP-ribosylation factor; Arl, ADP-ribosylation factor-like; BSF, bloodstream form; ConA, concanavalin A; NMT, myristoyl-CoA:protein N-myristoyltransferase; RNAi, RNA interference; T. brucei, Trypanosoma brucei; VSG, variant surface glycoprotein; Myristoyl-CoA:protein N-myristoyltransferase; N-Myristoylation; Trypanosoma brucei; Endocytosis; RNA interference; Drug target
11.  Evaluation of the Diagnostic Accuracy of Prototype Rapid Tests for Human African Trypanosomiasis 
Background
Diagnosis of human African trypanosomiasis (HAT) remains a challenge both for active screening, which is critical in control of the disease, and in the point-of-care scenario where early and accurate diagnosis is essential. Recently, the first field deployment of a lateral flow rapid diagnostic test (RDT) for HAT, “SD BIOLINE HAT” has taken place. In this study, we evaluated the performance of “SD BIOLINE HAT” and two new prototype RDTs.
Methodology/Principal Findings
The performance of “SD BIOLINE HAT” and 2 prototype RDTs was tested using archived plasma from 250 Trypanosoma brucei gambiense patients, and 250 endemic controls. As well as comparison of the sensitivity and specificity of each device, the performance of individual antigens was assessed and the hypothetical performance of novel antigen combinations extrapolated. Neither of the prototype devices were inferior in sensitivity or specificity to “SD BIOLINE HAT” (sensitivity 0.82±0.01, specificity 0.97±0.01, 95% CI) at the 5% margins, while one of the devices (BBI) had significantly superior sensitivity (0.88±0.03). Analysis of the performance of individual antigens was used to model new antigen combinations to be explored in development of the next generation of HAT RDTs. The modelling showed that an RDT using two recombinant antigens (rLiTat1.5 and rISG65) would give a performance similar to the best devices in this study, and would also offer the most robust performance under deteriorating field conditions.
Conclusions/Significance
Both “SD BIOLINE HAT” and the prototype devices performed comparably well to one another and also to the published performance range of the card agglutination test for trypanosomiasis in sensitivity and specificity. The performance of individual antigens enabled us to predict that an all-recombinant antigen RDT can be developed with an accuracy equivalent to “ SD BIOLINE HAT.” Such an RDT would have advantages in simplified manufacture, lower unit cost and assured reproducibility.
Author Summary
The most prevalent species of trypanosome causing human African trypanosomiasis (HAT), Trypanosoma brucei gambiense, presents a diagnostic challenge. While early diagnosis is essential for effective treatment and also to control transmission, symptoms are non-specific and parasitological diagnosis is laborious and technically difficult. Screening for HAT suspects has until now been done using the card agglutination test for trypanosomiasis (CATT), which requires a cold chain and equipment, making it difficult to deploy. Thus there is an urgent need for sensitive point of care diagnostic tests that are suitable for use in rural areas in terms of stability, simplicity and cost. We describe the evaluation of 3 rapid diagnostic tests (RDTs) for HAT based on lateral flow devices that detect antibodies against defined parasite antigens in blood samples. We demonstrate that the SD BIOLINE HAT RDT currently being deployed in HAT endemic regions, as well as two new prototype devices, are accurate in screening for HAT. By analysing the sensitivity of each of the antigens used in the devices tested, we predict that a highly sensitive RDT based on recombinant antigens can be developed. An all-recombinant antigen RDT offers significant benefits in manufacturing reproducibility and cost, and would dramatically simplify HAT diagnosis.
doi:10.1371/journal.pntd.0003373
PMCID: PMC4270746  PMID: 25521120
12.  Surface Sialic Acids Taken from the Host Allow Trypanosome Survival in Tsetse Fly Vectors 
The Journal of Experimental Medicine  2004;199(10):1445-1450.
The African trypanosome Trypanosoma brucei, which causes sleeping sickness in humans and Nagana disease in livestock, is spread via blood-sucking Tsetse flies. In the fly's intestine, the trypanosomes survive digestive and trypanocidal environments, proliferate, and translocate into the salivary gland, where they become infectious to the next mammalian host. Here, we show that for successful survival in Tsetse flies, the trypanosomes use trans-sialidase to transfer sialic acids that they cannot synthesize from host's glycoconjugates to the glycosylphosphatidylinositols (GPIs), which are abundantly expressed on their surface. Trypanosomes lacking sialic acids due to a defective generation of GPI-anchored trans-sialidase could not survive in the intestine, but regained the ability to survive when sialylated by means of soluble trans-sialidase. Thus, surface sialic acids appear to protect the parasites from the digestive and trypanocidal environments in the midgut of Tsetse flies.
doi:10.1084/jem.20030635
PMCID: PMC2211819  PMID: 15136592
Trypanosoma brucei; trypanosomiasis; glycosylphosphatidylinositol; trans-sialidase; GPI transamidase
13.  Identification of sVSG117 as an Immunodiagnostic Antigen and Evaluation of a Dual-Antigen Lateral Flow Test for the Diagnosis of Human African Trypanosomiasis 
Background
The diagnosis of human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense relies mainly on the Card Agglutination Test for Trypanosomiasis (CATT). There is no immunodiagnostic for HAT caused by T. b. rhodesiense. Our principle aim was to develop a prototype lateral flow test that might be an improvement on CATT.
Methodology/Principle Findings
Pools of infection and control sera were screened against four different soluble form variant surface glycoproteins (sVSGs) by ELISA and one, sVSG117, showed particularly strong immunoreactivity to pooled infection sera. Using individual sera, sVSG117 was shown to be able to discriminate between T. b. gambiense infection and control sera by both ELISA and lateral flow test. The sVSG117 antigen was subsequently used with a previously described recombinant diagnostic antigen, rISG65, to create a dual-antigen lateral flow test prototype. The latter was used blind in a virtual field trial of 431 randomized infection and control sera from the WHO HAT Specimen Biobank.
Conclusion/Significance
In the virtual field trial, using two positive antigen bands as the criterion for infection, the sVSG117 and rISG65 dual-antigen lateral flow test prototype showed a sensitivity of 97.3% (95% CI: 93.3 to 99.2) and a specificity of 83.3% (95% CI: 76.4 to 88.9) for the detection of T. b. gambiense infections. The device was not as good for detecting T. b. rhodesiense infections using two positive antigen bands as the criterion for infection, with a sensitivity of 58.9% (95% CI: 44.9 to 71.9) and specificity of 97.3% (95% CI: 90.7 to 99.7). However, using one or both positive antigen band(s) as the criterion for T. b. rhodesiense infection improved the sensitivity to 83.9% (95% CI: 71.7 to 92.4) with a specificity of 85.3% (95% CI: 75.3 to 92.4). These results encourage further development of the dual-antigen device for clinical use.
Author Summary
Human African Trypanosomiasis (HAT) is caused by infection with Trypanosoma brucei gambiense or T. b. rhodesiense. The diagnosis of T. b. gambiense infections currently relies primarily on a Card Agglutination Test for Trypanosomiasis (CATT), which has acknowledged limitations, and there is no simple test for T. b. rhodesiense infection. Our overall aim is to produce a simple lateral flow test device with a similar or better sensitivity and specificity than CATT but with better stability and ease of use at point of care. In this study, we identified a particular variant surface glycoprotein, sVSG117, with good diagnostic potential and combined it with a previously identified recombinant diagnostic antigen, rISG65, to produce a prototype dual-antigen lateral flow test. We performed a virtual field trial by testing the device blind with 431 randomized serum samples provided by the WHO HAT Specimen Biobank. The results show that, although the prototype lateral flow test is un-optimized, it was able to diagnose T. b. gambiense HAT with a sensitivity and specificity of 97.3% and 83.3% and T. b. rhodesiense HAT with a sensitivity and specificity of 83.9% and 85.3%.
doi:10.1371/journal.pntd.0002976
PMCID: PMC4102454  PMID: 25033401
14.  Proteomic Selection of Immunodiagnostic Antigens for Trypanosoma congolense 
Animal African Trypanosomosis (AAT) presents a severe problem for agricultural development in sub-Saharan Africa. It is caused by several trypanosome species and current means of diagnosis are expensive and impractical for field use. Our aim was to discover antigens for the detection of antibodies to Trypanosoma congolense, one of the main causative agents of AAT. We took a proteomic approach to identify potential immunodiagnostic parasite protein antigens. One hundred and thirteen proteins were identified which were selectively recognized by infected cattle sera. These were assessed for likelihood of recombinant protein expression in E. coli and fifteen were successfully expressed and assessed for their immunodiagnostic potential by ELISA using pooled pre- and post-infection cattle sera. Three proteins, members of the invariant surface glycoprotein (ISG) family, performed favorably and were then assessed using individual cattle sera. One antigen, Tc38630, evaluated blind with 77 randomized cattle sera in an ELISA assay gave sensitivity and specificity performances of 87.2% and 97.4%, respectively. Cattle immunoreactivity to this antigen diminished significantly following drug-cure, a feature helpful for monitoring the efficacy of drug treatment.
Author Summary
Animal African Trypanosomosis (AAT) is a set of diseases whereby animals are infected with single-cell parasites that replicate in their bloodstream. The disease in cattle results in weight-loss and death, and AAT is a significant veterinary problem for sub-Saharan Africa. One of the principal trypanosome species responsible for AAT in cattle is Trypanosoma congolense and, although there are drug-treatments for these infections, current diagnostic methods are impractical for field use. Our aim was to discover protein molecules from the parasite to which infected animals make antibodies, to then make these proteins in bacteria and to subsequently demonstrate that they can be used to detect antibodies in cattle serum, thus diagnosing AAT. To discover the diagnostic proteins, we dissolved parasites in a detergent solution and applied them to beads coated with antibodies from infected cattle and to beads coated with antibodies from un-infected cattle. We then compared the proteins bound to each and selected those proteins that were at least 100-fold enriched by the infected cattle antibodies. We refined this list, according to practical and performance considerations, and settled on one protein, called Tc38630. Testing Tc38630 with cattle sera showed that it can detect about nine out of ten AAT infections.
doi:10.1371/journal.pntd.0002936
PMCID: PMC4055490  PMID: 24922510
15.  High-Confidence Glycosome Proteome for Procyclic Form Trypanosoma brucei by Epitope-Tag Organelle Enrichment and SILAC Proteomics 
Journal of Proteome Research  2014;13(6):2796-2806.
The glycosome of the pathogenic African trypanosome Trypanosoma brucei is a specialized peroxisome that contains most of the enzymes of glycolysis and several other metabolic and catabolic pathways. The contents and transporters of this membrane-bounded organelle are of considerable interest as potential drug targets. Here we use epitope tagging, magnetic bead enrichment, and SILAC quantitative proteomics to determine a high-confidence glycosome proteome for the procyclic life cycle stage of the parasite using isotope ratios to discriminate glycosomal from mitochondrial and other contaminating proteins. The data confirm the presence of several previously demonstrated and suggested pathways in the organelle and identify previously unanticipated activities, such as protein phosphatases. The implications of the findings are discussed.
doi:10.1021/pr401209w
PMCID: PMC4052807  PMID: 24792668
Trypanosoma brucei; quantitative proteomics; peroxisome; glycosome
16.  Identification and Functional Characterization of a Highly Divergent N-Acetylglucosaminyltransferase I (TbGnTI) in Trypanosoma brucei 
The Journal of Biological Chemistry  2014;289(13):9328-9339.
Background: Trypanosoma brucei expresses a highly glycosylated surface coat that is essential for parasite survival.
Results: The T. brucei gene TbGT11 encodes an N-acetylglucosaminyltransferase I, the key enzyme for initiating the biosynthesis of complex N-glycans.
Conclusion: T. brucei GnTI is not a homologue of metazoan GnTI, but a highly divergent enzyme belonging to the β3-glycosyltransferase family.
Significance: Deeper understanding of T. brucei N-glycosylation pathway.
Trypanosoma brucei expresses a diverse repertoire of N-glycans, ranging from oligomannose and paucimannose structures to exceptionally large complex N-glycans. Despite the presence of the latter, no obvious homologues of known β1–4-galactosyltransferase or β1–2- or β1–6-N-acetylglucosaminyltransferase genes have been found in the parasite genome. However, we previously reported a family of putative UDP-sugar-dependent glycosyltransferases with similarity to the mammalian β1–3-glycosyltransferase family. Here we characterize one of these genes, TbGT11, and show that it encodes a Golgi apparatus resident UDP-GlcNAc:α3-d-mannoside β1–2-N-acetylglucosaminyltransferase I activity (TbGnTI). The bloodstream-form TbGT11 null mutant exhibited significantly modified protein N-glycans but normal growth in vitro and infectivity to rodents. In contrast to multicellular organisms, where the GnTI reaction is essential for biosynthesis of both complex and hybrid N-glycans, T. brucei TbGT11 null mutants expressed atypical “pseudohybrid” glycans, indicating that TbGnTII activity is not dependent on prior TbGnTI action. Using a functional in vitro assay, we showed that TbGnTI transfers UDP-GlcNAc to biantennary Man3GlcNAc2, but not to triantennary Man5GlcNAc2, which is the preferred substrate for metazoan GnTIs. Sequence alignment reveals that the T. brucei enzyme is far removed from the metazoan GnTI family and suggests that the parasite has adapted the β3-glycosyltransferase family to catalyze β1–2 linkages.
doi:10.1074/jbc.M114.555029
PMCID: PMC3979372  PMID: 24550396
Glycobiology; Glycosyltransferases; Parasite; Post-translational Modification; Trypanosoma brucei; N-Acetylglucosamine
17.  Probing the substrate specificity of Trypanosoma brucei GlcNAc-PI de-N-acetylase with synthetic substrate analogues† †Electronic supplementary information (ESI) available: Additional experimental procedures and characterisation data for the β-anomers 8 and 10 plus 1H and 13C NMR spectra of all the compounds. See DOI: 10.1039/c3ob42164c Click here for additional data file. Click here for additional data file.  
Organic & Biomolecular Chemistry  2014;12(12):1919-1934.
A series of substrates analogues of GlcNAc-PI de-N-acetylase were tested as substrates and inhibitors of the Trypanosoma brucei enzyme.
A series of synthetic analogues of 1-d-(2-amino-2-deoxy-α-d-glucopyranosyl)-myo-inositol 1-(1,2-di-O-hexadecanoyl-sn-glycerol 3-phosphate), consisting of 7 variants of either the d-myo-inositol, d-GlcpN or the phospholipid components, were prepared and tested as substrates and inhibitors of GlcNAc-PI de-N-acetylase, a genetically validated drug target enzyme responsible for the second step in the glycosylphosphatidylinositol (GPI) biosynthetic pathway of Trypanosoma brucei. The d-myo-inositol in the physiological substrate was successfully replaced by cyclohexanediol and is still a substrate for T. brucei GlcNAc-PI de-N-acetylase. However, this compound became sensitive to the stereochemistry of the glycoside linkage (the β-anomer was neither substrate or inhibitor) and the structure of the lipid moiety (the hexadecyl derivatives were inhibitors). Chemistry was successfully developed to replace the phosphate with a sulphonamide, but the compound was neither a substrate or an inhibitor, confirming the importance of the phosphate for molecular recognition. We also replaced the glucosamine by an acyclic analogue, but this also was inactive, both as a substrate and inhibitor. These findings add significantly to our understanding of substrate and inhibitor binding to the GlcNAc-PI de-N-acetylase enzyme and will have a bearing on the design of future inhibitors.
doi:10.1039/c3ob42164c
PMCID: PMC4184461  PMID: 24519084
18.  Exploring the Trypanosoma brucei Hsp83 Potential as a Target for Structure Guided Drug Design 
Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs - whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp), while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83 – a homolog of human Hsp90 – as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF). Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC) and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite.
Author Summary
Sleeping sickness, or human African trypanosomiasis (HAT), is a deadly neglected disease for which new therapeutic options are badly needed. Current drugs have several liabilities including toxicity and route of administration limiting their efficacy to combat the disease. Our study aimed at validating a potential new drug target against Trypanosoma brucei, its heat shock protein 83 (Hsp83). The chaperone was screened against a repurposed library composed of inhibitors against the human Hsp90. The compounds were assayed in their ability to bind the T. brucei protein and to kill the parasite. Our work has identified selective and high-affinity chemical compounds targeting the parasitic Hsp83. Additionally, structural studies were conducted to explore the observed selectivity of selected inhibitors. Our work has validated T. brucei Hsp83 as a potential target for future drug discovery campaigns. It has also shown the strength of repurposing chemical libraries developed against human proteins, emphasizing the possibility to piggyback current and past drug discovery efforts for other diseases in the search for new drugs against neglected tropical diseases.
doi:10.1371/journal.pntd.0002492
PMCID: PMC3798429  PMID: 24147171
19.  A Novel Allosteric Inhibitor of the Uridine Diphosphate N-Acetylglucosamine Pyrophosphorylase from Trypanosoma brucei 
ACS Chemical Biology  2013;8(9):1981-1987.
Uridine diphosphate N-acetylglucosamine pyrophosphorylase (UAP) catalyzes the final reaction in the biosynthesis of UDP-GlcNAc, an essential metabolite in many organisms including Trypanosoma brucei, the etiological agent of Human African Trypanosomiasis. High-throughput screening of recombinant T. brucei UAP identified a UTP-competitive inhibitor with selectivity over the human counterpart despite the high level of conservation of active site residues. Biophysical characterization of the UAP enzyme kinetics revealed that the human and trypanosome enzymes both display a strictly ordered bi–bi mechanism, but with the order of substrate binding reversed. Structural characterization of the T. brucei UAP–inhibitor complex revealed that the inhibitor binds at an allosteric site absent in the human homologue that prevents the conformational rearrangement required to bind UTP. The identification of a selective inhibitory allosteric binding site in the parasite enzyme has therapeutic potential.
doi:10.1021/cb400411x
PMCID: PMC3780468  PMID: 23834437
20.  Genetic and structural validation of Aspergillus fumigatus N-acetylphosphoglucosamine mutase as an antifungal target 
Bioscience Reports  2013;33(5):e00063.
Aspergillus fumigatus is the causative agent of IA (invasive aspergillosis) in immunocompromised patients. It possesses a cell wall composed of chitin, glucan and galactomannan, polymeric carbohydrates synthesized by processive glycosyltransferases from intracellular sugar nucleotide donors. Here we demonstrate that A. fumigatus possesses an active AfAGM1 (A. fumigatus N-acetylphosphoglucosamine mutase), a key enzyme in the biosynthesis of UDP (uridine diphosphate)–GlcNAc (N-acetylglucosamine), the nucleotide sugar donor for chitin synthesis. A conditional agm1 mutant revealed the gene to be essential. Reduced expression of agm1 resulted in retarded cell growth and altered cell wall ultrastructure and composition. The crystal structure of AfAGM1 revealed an amino acid change in the active site compared with the human enzyme, which could be exploitable in the design of selective inhibitors. AfAGM1 inhibitors were discovered by high-throughput screening, inhibiting the enzyme with IC50s in the low μM range. Together, these data provide a platform for the future development of AfAGM1 inhibitors with antifungal activity.
doi:10.1042/BSR20130053
PMCID: PMC3763426  PMID: 23844980
cell wall; drug target; enzyme; inhibitor; nucleotide sugar; protein structure; AfAGM1, A. fumigatus N-acetylphosphoglucosamine mutase; AGM1, N-acetylphosphoglucosamine mutase; CaAGM1, Candida albicans AGM1; Fru-6P, fructose 6-phosphate; G6PDH, glucose-6-phosphate dehydrogenase; GlcNAc, N-acetylglucosamine; GlcNAc-1P, N-acetylglucosamine-1-phosphate; GlcN-6P, glucosamine 6-phosphate; GFA1, glutamine: Fru-6P amidotransferase; GNA1, GlcN-6P acetyltransferase; IA, invasive aspergillosis; MIC, minimum inhibitory concentration; MM, minimal medium; RMSD, root mean square deviation; UAP1, UDP–GlcNAc pyrophosphorylase; UDP, uridine diphosphate
21.  Mnt1p and Mnt2p of Candida albicans Are Partially Redundant α-1,2-Mannosyltransferases That Participate in O-Linked Mannosylation and Are Required for Adhesion and Virulence* 
The Journal of biological chemistry  2004;280(2):1051-1060.
The MNT1 gene of the human fungal pathogen Candida albicans is involved in O-glycosylation of cell wall and secreted proteins and is important for adherence of C. albicans to host surfaces and for virulence. Here we describe the molecular analysis of CaMNT2, a second member of the MNT1-like gene family in C. albicans. Mnt2p also functions in O-glycosylation. Mnt1p and Mnt2p encode partially redundant α-1,2-mannosyltransferases that catalyze the addition of the second and third mannose residues in an O-linked mannose pentamer. Deletion of both copies of MNT1 and MNT2 resulted in reduction in the level of in vitro mannosyltransferase activity and truncation of O-mannan. Both the mnt2Δ and mnt1Δ single mutants were significantly reduced in adherence to human buccal epithelial cells and Matrigel-coated surfaces, indicating a role for O-glycosylated cell wall proteins or O-mannan itself in adhesion to host surfaces. The double mnt1Δmnt2Δ mutant formed aggregates of cells that appeared to be the result of abnormal cell separation. The double mutant was attenuated in virulence, underlining the importance of O-glycosylation in pathogenesis of C. albicans infections.
doi:10.1074/jbc.M411413200
PMCID: PMC3749086  PMID: 15519997
22.  Protein O-GlcNAcylation Is Required for Fibroblast Growth Factor Signaling in Drosophila 
Science signaling  2011;4(204):ra89.
Glycosylation is essential for growth factor signaling through N-glycosylation of ligands and receptors and the biosynthesis of proteoglycans as co-receptors. Here, we show that protein O-GlcNAcylation is crucial for fibroblast growth factor (FGF) signaling in Drosophila. We found that nesthocker (nst) encodes a phosphoacetylglucosamine mutase and that nst mutant embryos exhibited low amounts of intracellular uridine 5′-diphosphate–N-acetylglucosamine (UDP-GlcNAc), which disrupted protein O-GlcNAcylation. Nst was required for mitogen-activated protein kinase (MAPK) signaling downstream of FGF but not MAPK signaling activated by epidermal growth factor. nst was dispensable for the function of the FGF ligands and the FGF receptor’s extracellular domain but was essential in the signal-receiving cells downstream of the FGF receptor. We identified the adaptor protein Downstream of FGF receptor (Dof), which interacts with the FGF receptor, as the relevant target for O-GlcNAcylation in the FGF pathway, suggesting that protein O-GlcNAcylation of the activated receptor complex is essential for FGF signal transduction.
doi:10.1126/scisignal.2002335
PMCID: PMC3660836  PMID: 22375049
23.  Probing Elongating and Branching β-d-Galactosyltransferase Activities in Leishmania Parasites by Making Use of Synthetic Phosphoglycans 
ACS chemical biology  2011;6(6):648-657.
Protozoan parasites of the genus Leishmania synthesize lipophosphoglycans (LPGs), phosphoglycans and proteophosphoglycans that contain phosphosaccharide repeat units of [−6)Gal(β1-4)Man(α1-OPO3H−]. The repeat structures are assembled by sequential addition of Manα1-OPO3H and β-Gal. In this study, an UDP-Gal-dependent activity was detected in L. donovani and L. major membranes using synthetic phospho-oligosaccharide fragments of lipophosphoglycan as acceptor substrates. Incubation of a microsomal preparation from L. donovani or L. major parasites with synthetic substrates and UDP-[6-3H]Gal resulted in incorporation of radiolabel into these exogenous acceptors. The [3H]galactose-labeled products were characterized by degradation into radioactive, low molecular mass fragments upon hydrolysis with mild acid and treatment with β-galactosidases. We showed that the activity detected with L. donovani membranes is the elongating β-d-galactosyltransferase associated with LPG phosphosaccharide backbone biosynthesis (eGalT). The eGalT activity showed a requirement for the presence of at least one phosphodiester group in the substrate and it was enhanced dramatically when two or three phosphodiester groups were present. Using the same substrates we detected two types of galactosyltransferase activity in L. major membranes: the elongating β-d-galactosyltransferase and a branching β-d-galactosyltransferase (bGalT). Both L. major enzymes required a minimum of one phosphodiester group present in the substrate, but acceptors with two or three phosphodiester groups were found to be superior.
doi:10.1021/cb100416j
PMCID: PMC3659391  PMID: 21425873
24.  Global Quantitative SILAC Phosphoproteomics Reveals Differential Phosphorylation Is Widespread between the Procyclic and Bloodstream Form Lifecycle Stages of Trypanosoma brucei 
Journal of Proteome Research  2013;12(5):2233-2244.
We report a global quantitative phosphoproteomic study of bloodstream and procyclic form Trypanosoma brucei using SILAC labeling of each lifecycle stage. Phosphopeptide enrichment by SCX and TiO2 led to the identification of a total of 10096 phosphorylation sites on 2551 protein groups and quantified the ratios of 8275 phosphorylation sites between the two lifecycle stages. More than 9300 of these sites (92%) have not previously been reported. Model-based gene enrichment analysis identified over representation of Gene Ontology terms relating to the flagella, protein kinase activity, and the regulation of gene expression. The quantitative data reveal that differential protein phosphorylation is widespread between bloodstream and procyclic form trypanosomes, with significant intraprotein differential phosphorylation. Despite a lack of dedicated tyrosine kinases, 234 phosphotyrosine residues were identified, and these were 3–4 fold over-represented among site changing >10-fold between the two lifecycle stages. A significant proportion of the T. brucei kinome was phosphorylated, with evidence that MAPK pathways are functional in both lifecycle stages. Regulation of gene expression in T. brucei is exclusively post-transcriptional, and the extensive phosphorylation of RNA binding proteins observed may be relevant to the control of mRNA stability in this organism.
doi:10.1021/pr400086y
PMCID: PMC3646404  PMID: 23485197
phosphorylation; SILAC; Trypanosoma brucei; quantitative proteomics; phosphoproteomics
25.  Proteomic Selection of Immunodiagnostic Antigens for Human African Trypanosomiasis and Generation of a Prototype Lateral Flow Immunodiagnostic Device 
Background
The diagnosis of Human African Trypanosomiasis relies mainly on the Card Agglutination Test for Trypanosomiasis (CATT). While this test is successful, it is acknowledged that there may be room for improvement. Our aim was to develop a prototype lateral flow test based on the detection of antibodies to trypanosome antigens.
Methodology/Principal Findings
We took a non-biased approach to identify potential immunodiagnostic parasite protein antigens. The IgG fractions from the sera from Trypanosoma brucei gambiense infected and control patients were isolated using protein-G affinity chromatography and then immobilized on Sepharose beads. The IgG-beads were incubated with detergent lysates of trypanosomes and those proteins that bound were identified by mass spectrometry-based proteomic methods. This approach provided a list of twenty-four trypanosome proteins that selectively bound to the infection IgG fraction and that might, therefore, be considered as immunodiagnostic antigens. We selected four antigens from this list (ISG64, ISG65, ISG75 and GRESAG4) and performed protein expression trials in E. coli with twelve constructs. Seven soluble recombinant protein products (three for ISG64, two for ISG65 and one each for ISG75 and GRESAG4) were obtained and assessed for their immunodiagnostic potential by ELISA using individual and/or pooled patient sera. The ISG65 and ISG64 construct ELISAs performed well with respect to detecting T. b. gambiense infections, though less well for detecting T. b. rhodesiense infections, and the best performing ISG65 construct was used to develop a prototype lateral flow diagnostic device.
Conclusions/Significance
Using a panel of eighty randomized T. b. gambiense infection and control sera, the prototype showed reasonable sensitivity (88%) and specificity (93%) using visual readout in detecting T. b. gambiense infections. These results provide encouragement to further develop and optimize the lateral flow device for clinical use.
Author Summary
Human African Trypanosomiasis is caused by infection with Trypanosoma brucei gambiense or T. b. rhodesiense. Preliminary diagnosis of T. b. gambiense infection relies mainly on a Card Agglutination Test for Trypanosomiasis (CATT), which has acknowledged limitations. New approaches are needed, first to identify new diagnostic antigens and, second, to find a more suitable platform for field-based immunodiagnostic tests. We took an unbiased approach to identify candidate diagnostic antigens by asking which parasite proteins bind to the antibodies of infected patients and not to the antibodies of uninfected patients. From this list of twenty-four candidate antigens, we selected four and from these we selected the one that worked the best in conventional immunodiagnostic tests. This antigen, ISG65, was used to make lateral flow devices, where a small sample of patient serum is added to a pad and thirty minutes later infection can be inferred by simple optical read out. This simple prototype device works as well as the CATT test and may be developed and optimized for clinical use in the field.
doi:10.1371/journal.pntd.0002087
PMCID: PMC3584999  PMID: 23469310

Results 1-25 (61)