PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Expression, purification, crystallization and preliminary X-ray analysis of eCGP123, an extremely stable monomeric green fluorescent protein with reversible photoswitching properties 
eCGP123, an extremely stable GFP with photoswitching properties, has been expressed, purified and crystallized. A diffraction data set has been collected at 2.10 Å resolution.
Enhanced consensus green protein variant 123 (eCGP123) is an extremely thermostable green fluorescent protein (GFP) that exhibits useful negative reversible photoswitching properties. eCGP123 was derived by the application of both a consensus engineering approach and a recursive evolutionary process. Diffraction-quality crystals of recombinant eCGP123 were obtained by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant. The eCGP123 crystal diffracted X-rays to 2.10 Å resolution. The data were indexed in space group P1, with unit-cell parameters a = 74.63, b = 75.38, c = 84.51 Å, α = 90.96, β = 89.92, γ = 104.03°. The Matthews coefficient (V M = 2.26 Å3 Da−1) and a solvent content of 46% indicated that the asymmetric unit contained eight eCGP123 molecules.
doi:10.1107/S1744309111028156
PMCID: PMC3212379  PMID: 22102044
green fluorescent proteins; thermostability; photoswitching; Dronpa
2.  A Green Fluorescent Protein Containing a QFG Tri-Peptide Chromophore: Optical Properties and X-Ray Crystal Structure 
PLoS ONE  2012;7(10):e47331.
Rtms5 is an deep blue weakly fluorescent GFP-like protein (, 592 nm; , 630nm; ΦF, 0.004) that contains a 66Gln-Tyr-Gly chromophore tripeptide sequence. We investigated the optical properties and structure of two variants, Rtms5Y67F and Rtms5Y67F/H146S in which the tyrosine at position 67 was substituted by a phenylalanine. Compared to the parent proteins the optical spectra for these new variants were significantly blue-shifted. Rtms5Y67F spectra were characterised by two absorbing species (, 440 nm and 513 nm) and green fluorescence emission (, 440 nm; , 508 nm; ΦF, 0.11), whilst Rtms5Y67F/H146S spectra were characterised by a single absorbing species (, 440 nm) and a relatively high fluorescence quantum yield (ΦF, 0.75; , 440 nm; , 508 nm). The fluorescence emissions of each variant were remarkably stable over a wide range of pH (3–11). These are the first GFP-like proteins with green emissions (500–520 nm) that do not have a tyrosine at position 67. The X-ray crystal structure of each protein was determined to 2.2 Å resolution and showed that the benzylidine ring of the chromophore, similar to the 4-hydroxybenzylidine ring of the Rtms5 parent, is non-coplanar and in the trans conformation. The results of chemical quantum calculations together with the structural data suggested that the 513 nm absorbing species in Rtms5Y67F results from an unusual form of the chromophore protonated at the acylimine oxygen. These are the first X-ray crystal structures for fluorescent proteins with a functional chromophore containing a phenylalanine at position 67.
doi:10.1371/journal.pone.0047331
PMCID: PMC3468514  PMID: 23071789
3.  Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin 
Nature  2008;456(7222):648-652.
AB5 toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB5 toxin secreted by Shiga toxigenic Escherichia coli (STEC)1, which causes serious gastrointestinal disease in humans2. SubAB causes haemolytic uraemic syndrome-like pathology in mice3 via SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone4. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesised in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite human lack of Neu5Gc biosynthesis, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, together with the human lack of Neu5Gc-containing body fluid competitors, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin’s receptor is generated by metabolic incorporation of an exogenous factor derived from food.
doi:10.1038/nature07428
PMCID: PMC2723748  PMID: 18971931
4.  A preliminary crystallographic analysis of the putative mevalonate diphosphate decarboxylase from Trypanosoma brucei  
The gene encoding the putative mevalonate diphosphate decarboxylase, an enzyme from the mevalonate pathway of isoprenoid precursor biosynthesis, has been cloned from T. brucei. Recombinant protein has been expressed, purified and highly ordered crystals obtained and characterized to aid the structure–function analysis of this enzyme.
Mevalonate diphosphate decarboxylase catalyses the last and least well characterized step in the mevalonate pathway for the biosynthesis of isopentenyl pyrophosphate, an isoprenoid precursor. A gene predicted to encode the enzyme from Trypanosoma brucei has been cloned, a highly efficient expression system established and a purification protocol determined. The enzyme gives monoclinic crystals in space group P21, with unit-cell parameters a = 51.5, b = 168.7, c = 54.9 Å, β = 118.8°. A Matthews coefficient V M of 2.5 Å3 Da−1 corresponds to two monomers, each approximately 42 kDa (385 residues), in the asymmetric unit with 50% solvent content. These crystals are well ordered and data to high resolution have been recorded using synchrotron radiation.
doi:10.1107/S1744309105014594
PMCID: PMC1952329  PMID: 16511101
decarboxylases; mevalonate biosynthesis; isoprenoids; Trypanosoma

Results 1-4 (4)