Search tips
Search criteria

Results 1-25 (45)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Centromedian-Parafascicular Deep Brain Stimulation Induces Differential Functional Inhibition of the Motor, Associative, and Limbic Circuits in Large Animals 
Biological psychiatry  2013;74(12):917-926.
Deep brain stimulation (DBS) of the centromedian-parafascicular (CM-Pf) thalamic nuclei has been considered an option for treating Tourette syndrome (TS). Using a large animal DBS model, this study was designed to explore the network effects of CM-Pf DBS.
The combination of DBS and functional MRI (fMRI) is a powerful means of tracing brain circuitry and testing the modulatory effects of electrical stimulation on a neuronal network in vivo. Using a with-in subjects design, we tested the proportional effects of CM and Pf DBS by manipulating current spread and varying stimulation contacts in healthy pigs (n=5).
Our results suggests that CM-Pf DBS has an inhibitory modulating effect in areas that have been suggested as contributing to impaired sensory-motor and emotional processing. The results also help to define the differential neural circuitry effects of the CM and Pf with evidence of prominent sensorimotor/associative effects for CM DBS and prominent limbic/associative effects for Pf DBS.
Our results support the notion that stimulation of deep brain structures, such as the CM-Pf, modulates multiple networks with cortical effects. The networks affected by CM-Pf stimulation in this study reinforce the conceptualization of TS as a condition with psychiatric and motor symptoms and of CM-Pf DBS as a potentially effective tool for treating both types of symptoms.
PMCID: PMC3910443  PMID: 23993641
Deep brain stimulation (DBS); Tourette syndrome; centromedian; parafascicular; functional magnetic resonance imaging (fMRI); swine model; neural circuitry
2.  Development of the Mayo Investigational Neuromodulation Control System: toward a closed-loop electrochemical feedback system for deep brain stimulation 
Journal of neurosurgery  2013;119(6):1556-1565.
Conventional deep brain stimulation (DBS) devices continue to rely on an open-loop system in which stimulation is independent of functional neural feedback. The authors previously proposed that as the foundation of a DBS “smart” device, a closed-loop system based on neurochemical feedback, may have the potential to improve therapeutic outcomes. Alterations in neurochemical release are thought to be linked to the clinical benefit of DBS, and fast-scan cyclic voltammetry (FSCV) has been shown to be effective for recording these evoked neurochemical changes. However, the combination of FSCV with conventional DBS devices interferes with the recording and identification of the evoked analytes. To integrate neurochemical recording with neurostimulation, the authors developed the Mayo Investigational Neuromodulation Control System (MINCS), a novel, wirelessly controlled stimulation device designed to interface with FSCV performed by their previously described Wireless Instantaneous Neurochemical Concentration Sensing System (WINCS).
To test the functionality of these integrated devices, various frequencies of electrical stimulation were applied by MINCS to the medial forebrain bundle of the anesthetized rat, and striatal dopamine release was recorded by WINCS. The parameters for FSCV in the present study consisted of a pyramidal voltage waveform applied to the carbon-fiber microelectrode every 100 msec, ramping between −0.4 V and +1.5 V with respect to an Ag/AgCl reference electrode at a scan rate of either 400 V/sec or 1000 V/sec. The carbon-fiber microelectrode was held at the baseline potential of −0.4 V between scans.
By using MINCS in conjunction with WINCS coordinated through an optic fiber, the authors interleaved intervals of electrical stimulation with FSCV scans and thus obtained artifact-free wireless FSCV recordings. Electrical stimulation of the medial forebrain bundle in the anesthetized rat by MINCS elicited striatal dopamine release that was time-locked to stimulation and increased progressively with stimulation frequency.
Here, the authors report a series of proof-of-principle tests in the rat brain demonstrating MINCS to be a reliable and flexible stimulation device that, when used in conjunction with WINCS, performs wirelessly controlled stimulation concurrent with artifact-free neurochemical recording. These findings suggest that the integration of neurochemical recording with neurostimulation may be a useful first step toward the development of a closed-loop DBS system for human application.
PMCID: PMC4001796  PMID: 24116724
deep brain stimulation; dopamine; fast scan cyclic voltammetry; wireless device; functional neurosurgery
3.  Dopamine measurement during prolonged deep brain stimulation: a proof-of-principle study of paired pulse voltammetry 
Deep Brain Stimulation (DBS) has been effective in treating various neurological and psychiatric disorders; however, its underlying mechanism hasn’t been completely understood. Fast scan cyclic voltammetry (FSCV) is a valuable tool to elucidate underlying neurotransmitter mechanisms of DBS, due to its sub-second temporal resolution and direct identification of analytes. However, since DBS-like high frequency stimulation evokes neurotransmitter release as well as extracellular pH shift, it is hard to isolate the neurotransmitter signal from the complex environment. Here we demonstrate the efficacy of a modified FSCV technique, Paired Pulse Voltammetry (PPV), in detecting dopamine (DA) release in the caudate nucleus during long-term electrical stimulation of the medial forebrain bundle (MFB) in the rat.
Unlike traditional FSCV applying a single triangular waveform, PPV employs a binary waveform with a specific time gap (2.2 ms) in between the comprising pulses. DA measurement was performed with a carbon fiber microelectrode placed in the caudate nucleus and a twisted bipolar stimulating electrode in the MFB. PPV data was collected with the Wireless Instantaneous Neurochemical Concentration Sensing System (WINCS).
Using PPV, the detection of DA was evident throughout the long-term stimulation (5 minutes); however, without PPV, in vivo environmental changes including pH shift eventually obscured the characteristic oxidation current of DA at 0.6V.
These results indicate that PPV can be a valuable tool to accurately determine DA dynamics in a complex in vivo environment during long-term electrical stimulation.
PMCID: PMC3969747  PMID: 24688801
Deep Brain Stimulation (DBS); Fast Scan Cyclic Voltammetry (FSCV); Paired Pulse Voltammetry (PPV); Dopamine (DA); Medial Forebrain Bundle (MFB)
4.  Combat-Related Intradural Gunshot Wound to the Thoracic Spine: Significant Improvement and Neurologic Recovery Following Bullet Removal 
Asian Spine Journal  2015;9(1):127-132.
The vast majority of combat-related penetrating spinal injuries from gunshot wounds result in severe or complete neurological deficit. Treatment is based on neurological status, the presence of cerebrospinal fluid (CSF) fistulas, and local effects of any retained fragment(s). We present a case of a 46-year-old male who sustained a spinal gunshot injury from a 7.62-mm AK-47 round that became lodged within the subarachnoid space at T9-T10. He immediately suffered complete motor and sensory loss. By 24-48 hours post-injury, he had recovered lower extremity motor function fully but continued to have severe sensory loss (posterior cord syndrome). On post-injury day 2, he was evacuated from the combat theater and underwent a T9 laminectomy, extraction of the bullet, and dural laceration repair. At surgery, the traumatic durotomy was widened and the bullet, which was laying on the dorsal surface of the spinal cord, was removed. The dura was closed in a water-tight fashion and fibrin glue was applied. Postoperatively, the patient made a significant but incomplete neurological recovery. His stocking-pattern numbness and sub-umbilical searing dysthesia improved. The spinal canal was clear of the foreign body and he had no persistent CSF leak. Postoperative magnetic resonance imaging of the spine revealed contusion of the spinal cord at the T9 level. Early removal of an intra-canicular bullet in the setting of an incomplete spinal cord injury can lead to significant neurological recovery following even high-velocity and/or high-caliber gunshot wounds. However, this case does not speak to, and prior experience does not demonstrate, significant neurological benefit in the setting of a complete injury.
PMCID: PMC4330208
Gunshot wound; Foreign body; Spinal cord injury; Laminectomy; Recovery of function
5.  Pathways of Translation: Deep Brain Stimulation 
Electrical stimulation of the brain has a 2000 year history. Deep brain stimulation (DBS), one form of neurostimulation, is a functional neurosurgical approach in which a high frequency electric current stimulates targeted brain structures for therapeutic benefit. It is an effective treatment for certain neuropathologic movement disorders and an emerging therapy for psychiatric conditions and epilepsy. Its translational journey did not follow the typical bench-to-bedside path, but rather reversed the process. The shift from ancient and medieval folkloric remedy to accepted medical practice began with independent discoveries about electricity during the 17th century and was fostered by technological advances of the 20th. In this article we review that journey and discuss how the quest to expand its applications and continue to improve outcomes is taking DBS from the bedside back to the bench.
PMCID: PMC4057890  PMID: 24330698
6.  The Nucleus Accumbens as a Potential Target for Central Poststroke Pain 
Mayo Clinic Proceedings  2012;87(10):1025-1031.
Although deep brain stimulation (DBS) has been found to be efficacious for some chronic pain syndromes, its usefulness in patients with central poststroke pain (CPSP) has been disappointing. The most common DBS targets for pain are the periventricular gray region (PVG) and the ventralis caudalis of the thalamus. Despite the limited success of DBS for CPSP, few alternative targets have been explored. The nucleus accumbens (NAC), a limbic structure within the ventral striatum that is involved in reward and pain processing, has emerged as an effective target for psychiatric disease. There is also evidence that it may be an effective target for pain. We describe a 72-year-old woman with a large right hemisphere infarct who subsequently experienced refractory left hemibody pain. She underwent placement of 3 electrodes in the right PVG, ventralis caudalis of the thalamus, and NAC. Individual stimulation of the NAC and PVG provided substantial improvement in pain rating. The patient underwent implantation of permanent electrodes in both targets, and combined stimulation has provided sustained pain relief at nearly 1 year after the procedure. These results suggest that the NAC may be an effective DBS target for CPSP.
PMCID: PMC3498057  PMID: 22980165
CPSP, central poststroke pain; DBS, deep brain stimulation; ECT, electroconvulive therapy; ICL, intercommissural line; MCS, motor cortex stimulation; NAC, nucleus accumbens; PFC, prefrontal cortex; PVG, periventricular gray region; VC, ventralis caudalis of the thalamus
7.  Wireless Fast-Scan Cyclic Voltammetry to Monitor Adenosine in Patients With Essential Tremor During Deep Brain Stimulation 
Mayo Clinic Proceedings  2012;87(8):760-765.
Essential tremor is often markedly reduced during deep brain stimulation simply by implanting the stimulating electrode before activating neurostimulation. Referred to as the microthalamotomy effect, the mechanisms of this unexpected consequence are thought to be related to microlesioning targeted brain tissue, that is, a microscopic version of tissue ablation in thalamotomy. An alternate possibility is that implanting the electrode induces immediate neurochemical release. Herein, we report the experiment performing with real-time fast-scan cyclic voltammetry to quantify neurotransmitter concentrations in human subjects with essential tremor during deep brain stimulation. The results show that the microthalamotomy effect is accompanied by local neurochemical changes, including adenosine release.
PMCID: PMC3538486  PMID: 22809886
CFM, carbon fiber microelectrode; DBS, deep brain stimulation; ET, essential tremor; FSCV, fast-scan cyclic voltammetry; MRI, magnetic resonance imaging; VIM, ventral intermediate nucleus of the thalamus
8.  Carbon Nanofiber Electrode for Neurochemical Monitoring 
Molecular neurobiology  2013;48(2):380-385.
The ability to rapidly detect neurotransmitter release has broad implications in the study of a variety of neurodegenerative diseases. Electrochemical detection methods using carbon nanofiber nanoelectrodes integrated into the Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) offer many important advantages including biocompatibility, selectivity, sensitivity, and rapid adsorption kinetics. Carbon nanofiber nanoelectrodes exhibit greater selectivity and sensitivity in the electrochemical detection of neurotransmitters compared to macroelectrodes and are able to resolve a ternary mixture of dopamine (DA), serotonin (5-HT), and ascorbic acid as well as to detect individual neurotransmitters in concentrations as low as 50 nM for DA and 100 nM for 5-HT using differential pulse voltammetry. Adsorption kinetics studies and isopropyl alcohol treatments modeled on previous studies on carbon fiber microelectrodes were conducted to investigate the analogous properties on carbon nanofiber electrodes using fast-scan cyclic voltammetry with WINCS and showed analogous results in carbon nanofiber electrodes compared with carbon fiber microelectrodes.
PMCID: PMC3932670  PMID: 23975638
Biosensor; Neurotransmitter; Carbon nanofiber; Nanoelectrode
9.  High frequency stimulation abolishes thalamic network oscillations: an electrophysiological and computational analysis 
Journal of neural engineering  2011;8(4):046001.
Deep Brain Stimulation (DBS) of thalamus has been demonstrated to be an effective for treatment of epilepsy. To investigate mechanism of action of thalamic DBS, we examined the effects of high frequency stimulation (HFS) on spindle oscillations in thalamic brain slices from ferrets. We recorded intracellular and extracellular electrophysiological activity in the nucleus Reticularis thalami (nRt) and in thalamocortical relay (TC) neurons in the lateral geniculate nucleus, stimulated the slice using a concentric bipolar electrode, and recorded the level of glutamate within the slice. HFS (100 Hz) of TC neurons generated excitatory post-synaptic potentials (EPSPs), increased the number of action potentials in both TC and nRt neurons, reduced the input resistance, increased the extracellular glutamate concentration, and abolished spindle wave oscillations. High frequency stimulation of the nRt also suppressed spindle oscillations. In both locations, HFS was associated with significant and persistent elevation in extracellular glutamate levels and suppressed spindle oscillations for many seconds after the cessation of stimulation. We simulated HFS within a computational model of the thalamic network, and HFS also disrupted spindle wave activity, but the suppression of spindle activity was short-lived. Simulated HFS disrupted spindle activity for prolonged periods of time only after glutamate release and glutamate-mediated activation of a hyperpolarization-activated current (Ih) were incorporated into the model. Our results suggest that the mechanism of action of thalamic DBS as used in epilepsy may involve the prolonged release of glutamate, which in turn modulates specific ion channels such as Ih, decreases neuronal input resistance, and abolishes thalamic network oscillatory activity.
PMCID: PMC3155385  PMID: 21623007
high frequency stimulation (HFS); deep brain stimulation (DBS); spindle oscillations
10.  Swine Model for Translational Research of Invasive Intracranial Monitoring 
Epilepsia  2011;52(6):e49-e53.
Focal cortical epilepsy is currently most effectively studied in humans. However, improvement in cortical monitoring and investigational device development is limited by lack of an animal model mimicking human acute focal cortical epileptiform activity under epilepsy surgery conditions. Therefore, we assessed the swine model for translational epilepsy research. Swine were used due to their cost effectiveness, convoluted cortex, and comparative anatomy similar to humans. Focal subcortical injection of benzyl-penicillin produced clinical seizures correlating with epileptiform activity demonstrating temporal and spatial progression. Swine were evaluated under 5 different anesthesia regimens. Of the 5 regimens, conditions similar to human intraoperative anesthesia, including continuous fentanyl with low dose isoflorane, was the most effective for eliciting complex, epileptiform activity after benzyl-penicillin injection. The most complex epileptiform activity (spikes, and high frequency activity) was then repeated reliably in 9 animals, utilizing 14 swine total. There were 20.1 ± 10.8 (95% CI: 11.8–28.4) epileptiform events with greater than 3.5 hertz activity occurring per animal. Average duration of each event was 46.3 ± 15.6 (95% CI: 44.0 to 48.6) seconds, ranging from 20 to 100 seconds. In conclusion, the acute swine model of focal cortical epilepsy surgery provides an animal model mimicking human surgical conditions with a large brain, gyrated cortex, and is relatively cheap among animal models. Therefore, we feel this model provides a valuable, reliable, and novel platform for translational studies of implantable hardware for intracranial monitoring.
PMCID: PMC3116097  PMID: 21627648
Epilepsy; Animal Model; Electroencephalography; Swine; Pig; Translational Research
Journal of neurosurgery  2010;113(3):656-665.
We previously reported the development of a Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for measuring dopamine and suggested that this technology may be useful for evaluating deep brain stimulation (DBS)-related neuromodulatory effects on neurotransmitter systems. WINCS supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially resolved neurotransmitter measurements. The FSCV parameters used to establish WINCS dopamine measurements are not suitable for serotonin, a neurotransmitter implicated in depression, because they lead to CFM fouling and a loss of sensitivity. Here, we incorporate into WINCS a previously described N-shaped waveform applied at a high scan rate to establish wireless serotonin monitoring.
FSCV optimized for the detection of serotonin consisted of an N-shaped waveform scanned linearly from a resting potential of, in V, +0.2 to +1.0, then to −0.1 and back to +0.2 at a rate of 1000 V/s. Proof of principle tests included flow injection analysis and electrically evoked serotonin release in the dorsal raphe nucleus of rat brain slices.
Flow cell injection analysis demonstrated that the N waveform applied at a scan rate of 1000 V/s significantly reduced serotonin fouling of the CFM, relative to that observed with FSCV parameters for dopamine. In brain slices, WINCS reliably detected sub-second serotonin release in the dorsal raphe nucleus evoked by local high-frequency stimulation.
WINCS supported high-fidelity wireless serotonin monitoring by FSCV at a CFM. In the future such measurements of serotonin in large animal models and in humans may help to establish the mechanism of DBS for psychiatric disease.
PMCID: PMC2946368  PMID: 20415521
5-HT; Deep brain stimulation; Neuromodulation; Neurotransmitters; Serotonin; Voltammetry
12.  Deep Brain Stimulation Results in Local Glutamate and Adenosine Release: Investigation into the Role of Astrocytes 
Neurosurgery  2010;67(2):367-375.
Several neurologic disorders are treated with deep brain stimulation; however, the mechanism underlying its ability to abolish oscillatory phenomena associated with diseases as diverse as Parkinson's and epilepsy remain largely unknown. In this study we sought to investigate the role of specific neurotransmitters in deep brain stimulation (DBS) and determine the role of non-neuronal cells in its mechanism of action.
We used the ferret thalamic slice preparation in vitro, which exhibits spontaneous spindle oscillations, in order to determine the effect of high-frequency stimulation on neurotransmitter release. We then performed experiments using an in vitro astrocyte culture to investigate the role of glial transmitter release in HFS-mediated abolishment of spindle oscillations.
In this series of experiments we demonstrated that glutamate and adenosine release in ferret slices was able to abolish spontaneous spindle oscillations. The glutamate release was still evoked in the presence of the Na+ channel blocker tetrodotoxin (TTX), but was eliminated with the vesicular H+-ATPase inhibitor, bafilomycin, and the calcium chelator, BAPTA-AM. Furthermore, electrical stimulation of purified primary astrocytic cultures was able to evoke intracellular calcium transients and glutamate release, and bath application of BAPTA-AM inhibited glutamate release in this setting.
These results suggest that vesicular astrocytic neurotransmitter release may be an important mechanism by which DBS is able to achieve clinical benefits.
PMCID: PMC2919357  PMID: 20644423
astrocytes; adenosine; deep brain stimulation; glia; glutamate; high frequency stimulation
13.  Development of intraoperative electrochemical detection: wireless instantaneous neurochemical concentration sensor for deep brain stimulation feedback 
Neurosurgical focus  2010;29(2):E6.
Deep brain stimulation (DBS) is effective when there appears to be a distortion in the complex neurochemical circuitry of the brain. Currently, the mechanism of DBS is incompletely understood; however, it has been hypothesized that DBS evokes release of neurochemicals. Well-established chemical detection systems such as microdialysis and mass spectrometry are impractical if one is assessing changes that are happening on a second-to-second time scale or for chronically used implanted recordings, as would be required for DBS feedback. Electrochemical detection techniques such as fast-scan cyclic voltammetry (FSCV) and amperometry have until recently remained in the realm of basic science; however, it is enticing to apply these powerful recording technologies to clinical and translational applications. The Wireless Instantaneous Neurochemical Concentration Sensor (WINCS) currently is a research device designed for human use capable of in vivo FSCV and amperometry, sampling at subsecond time resolution. In this paper, the authors review recent advances in this electrochemical application to DBS technologies. The WINCS can detect dopamine, adenosine, and serotonin by FSCV. For example, FSCV is capable of detecting dopamine in the caudate evoked by stimulation of the subthalamic nucleus/substantia nigra in pig and rat models of DBS. It is further capable of detecting dopamine by amperometry and, when used with enzyme linked sensors, both glutamate and adenosine. In conclusion, WINCS is a highly versatile instrument that allows near real-time (millisecond) detection of neurochemicals important to DBS research. In the future, the neurochemical changes detected using WINCS may be important as surrogate markers for proper DBS placement as well as the sensor component for a “smart” DBS system with electrochemical feedback that allows automatic modulation of stimulation parameters. Current work is under way to establish WINCS use in humans.
PMCID: PMC2939376  PMID: 20672923
deep brain stimulation; dopamine; adenosine; serotonin; fast-scan cyclic voltammetry; amperometry; electrochemistry
14.  High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of human DBS neurosurgery 
Neuroscience letters  2010;475(3):136-140.
Subthalamic nucleus deep brain stimulation (STN DBS) ameliorates motor symptoms of Parkinson’s disease, but the precise mechanism is still unknown. Here, using a large animal (pig) model of human STN DBS neurosurgery, we utilized fast-scan cyclic voltammetry in combination with a carbon-fiber microelectrode (CFM) implanted into the striatum to monitor dopamine release evoked by electrical stimulation at a human DBS electrode (Medtronic 3389) that was stereotactically implanted into the STN using MRI and electrophysiological guidance. STN electrical stimulation elicited a stimulus time-locked increase in striatal dopamine release that was both stimulus intensity- and frequency-dependent. Intensity-dependent (1–7 V) increases in evoked dopamine release exhibited a sigmoidal pattern attaining a plateau between 5 to 7 V of stimulation, while frequency-dependent dopamine release exhibited a linear increase from 60 to 120 Hz and attained a plateau thereafter (120–240 Hz). Unlike previous rodent models of STN DBS, optimal dopamine release in the striatum of the pig was obtained with stimulation frequencies that fell well within the therapeutically effective frequency range of human DBS (120–180 Hz). These results highlight the critical importance of utilizing a large animal model that more closely represents implanted DBS electrode configurations and human neuroanatomy to study neurotransmission evoked by STN DBS. Taken together, these results support a dopamine neuronal activation hypothesis suggesting that STN DBS evokes striatal dopamine release by stimulation of nigrostriatal dopaminergic neurons.
PMCID: PMC2874873  PMID: 20347936
Deep brain stimulation; Dopamine release; Fast-scan cyclic voltammetry; Pig brain; Subthalamic nucleus; Parkinson’s disease
15.  Local Glutamate Release in the Rat Ventral Lateral Thalamus Evoked by High-Frequency Stimulation 
Journal of neural engineering  2010;7(2):26009.
Thalamic deep brain stimulation (DBS) is proven therapy for essential tremor, Parkinson's disease, and Tourette's Syndrome. We tested the hypothesis that high-frequency electrical stimulation results in local thalamic glutamate release.
Enzyme-linked glutamate amperometric biosensors were implanted in anesthetized rat thalamus adjacent to the stimulating electrode. Electrical stimulation was delivered to investigate the effect of frequency, pulse width, voltage-controlled or current-controlled stimulation, and charge balancing.
Monophasic electrical stimulation-induced glutamate release was linearly dependent on stimulation frequency, intensity and pulse width. Prolonged stimulation evoked glutamate release to a plateau that subsequently decayed back to baseline after stimulation. Glutamate release was less pronounced with voltage-controlled stimulation and not present with charge balanced current-controlled stimulation.
Using fixed potential amperometry in combination with a glutamate bioprobe and adjacent microstimulating electrode, the present study has shown that monophasic current-controlled stimulation of the thalamus in the anesthetized rat evoked linear increases in local extracellular glutamate concentrations that were dependent on stimulation duration, frequency, intensity, and pulse width. However, the efficacy of monophasic voltage-controlled stimulation, in terms of evoking glutamate release in the thalamus, was substantially lower compared to monophasic current-controlled stimulation and entirely absent with biphasic (charge balanced) current-controlled stimulation. It remains to be determined whether similar glutamate release occurs with human DBS electrodes and similar charge balanced stimulation. As such, the present results indicate the importance of evaluating local neurotransmitter dynamics in studying the mechanism of action of DBS.
PMCID: PMC2905138  PMID: 20332553
deep brain stimulation; essential tremor; glutamate; electrochemistry; amperometry
16.  Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle 
Journal of neurosurgery  2010;112(3):539-548.
The authors of previous studies have demonstrated that local adenosine efflux may contribute to the therapeutic mechanism of action of thalamic deep brain stimulation (DBS) for essential tremor. Real-time monitoring of the neurochemical output of DBS-targeted regions may thus advance functional neurosurgical procedures by identifying candidate neurotransmitters and neuromodulators involved in the physiological effects of DBS. This would in turn permit the development of a method of chemically guided placement of DBS electrodes in vivo. Designed in compliance with FDA-recognized standards for medical electrical device safety, the authors report on the utility of the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for real-time comonitoring of electrical stimulation–evoked adenosine and dopamine efflux in vivo, utilizing fast-scan cyclic voltammetry (FSCV) at a polyacrylonitrile-based (T-650) carbon fiber microelectrode (CFM).
The WINCS was used for FSCV, which consisted of a triangle wave scanned between −0.4 and +1.5 V at a rate of 400 V/second and applied at 10 Hz. All voltages applied to the CFM were with respect to an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single T-650 carbon fiber (r = 2.5 μm) into a glass capillary and pulling to a microscopic tip using a pipette puller. The exposed carbon fiber (the sensing region) extended beyond the glass insulation by ∼ 50 μm. Proof of principle tests included in vitro measurements of adenosine and dopamine, as well as in vivo measurements in urethane-anesthetized rats by monitoring adenosine and dopamine efflux in the dorsomedial caudate putamen evoked by high-frequency electrical stimulation of the ventral tegmental area and substantia nigra.
The WINCS provided reliable, high-fidelity measurements of adenosine efflux. Peak oxidative currents appeared at +1.5 V and at +1.0 V for adenosine, separate from the peak oxidative current at +0.6 V for dopamine. The WINCS detected subsecond adenosine and dopamine efflux in the caudate putamen at an implanted CFM during high-frequency stimulation of the ventral tegmental area and substantia nigra. Both in vitro and in vivo testing demonstrated that WINCS can detect adenosine in the presence of other easily oxidizable neurochemicals such as dopamine comparable to the detection abilities of a conventional hardwired electrochemical system for FSCV.
Altogether, these results demonstrate that WINCS is well suited for wireless monitoring of high-frequency stimulation-evoked changes in brain extracellular concentrations of adenosine. Clinical applications of selective adenosine measurements may prove important to the future development of DBS technology.
PMCID: PMC2852872  PMID: 19731995
deep brain stimulation; neuromodulation; neurotransmitter; voltammetry; adenosine
17.  Moving Forward: Advances in the Treatment of Movement Disorders with Deep Brain Stimulation 
The modern era of stereotactic and functional neurosurgery has ushered in state of the art technologies for the treatment of movement disorders, particularly Parkinson’s disease (PD), tremor, and dystonia. After years of experience with various surgical therapies, the eventual shortcomings of both medical and surgical treatments, and several serendipitous discoveries, deep brain stimulation (DBS) has risen to the forefront as a highly effective, safe, and reversible treatment for these conditions. Idiopathic advanced PD can be treated with thalamic, globus pallidus internus (GPi), or subthalamic nucleus (STN) DBS. Thalamic DBS primarily relieves tremor while GPi and STN DBS alleviate a wide range of Parkinsonian symptoms. Thalamic DBS is also used in the treatment of other types of tremor, particularly essential tremor, with excellent results. Both primary and various types of secondary dystonia can be treated very effectively with GPi DBS. The variety of anatomical targets for these movement disorders is indicative of the network-level dysfunction mediating these movement disturbances. Despite an increasing understanding of the clinical benefits of DBS, little is known about how DBS can create such wide sweeping neuromodulatory effects. The key to improving this therapeutic modality and discovering new ways to treat these and other neurologic conditions lies in better understanding the intricacies of DBS. Here we review the history and pertinent clinical data for DBS treatment of PD, tremor, and dystonia. While multiple regions of the brain have been targeted for DBS in the treatment of these movement disorders, this review article focuses on those that are most commonly used in current clinical practice. Our search criteria for PubMed included combinations of the following terms: DBS, neuromodulation, movement disorders, PD, tremor, dystonia, and history. Dates were not restricted.
PMCID: PMC3211039  PMID: 22084629
deep brain stimulation; neuromodulation; Parkinson’s disease; tremor; dystonia
18.  Deep Brain Stimulation: Technology at the Cutting Edge 
Deep brain stimulation (DBS) surgery has been performed in over 75,000 people worldwide, and has been shown to be an effective treatment for Parkinson's disease, tremor, dystonia, epilepsy, depression, Tourette's syndrome, and obsessive compulsive disorder. We review current and emerging evidence for the role of DBS in the management of a range of neurological and psychiatric conditions, and discuss the technical and practical aspects of performing DBS surgery. In the future, evolution of DBS technology may depend on several key areas, including better scientific understanding of its underlying mechanism of action, advances in high-spatial resolution imaging and development of novel electrophysiological and neurotransmitter microsensor systems. Such developments could form the basis of an intelligent closed-loop DBS system with feedback-guided neuromodulation to optimize both electrode placement and therapeutic efficacy.
PMCID: PMC3024521  PMID: 21264197
deep brain stimulation; Parkinson's disease; mechanism of action
19.  Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry 
Journal of neurosurgery  2009;111(4):712-723.
Emerging evidence supports the hypothesis that modulation of specific central neuronal systems contributes to the clinical efficacy of deep brain stimulation (DBS) and motor cortex stimulation (MCS). Real-time monitoring of the neurochemical output of targeted regions may therefore advance functional neurosurgery by, among other goals, providing a strategy for investigation of mechanisms, identification of new candidate neurotransmitters, and chemically guided placement of the stimulating electrode. The authors report the development of a device called the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for intraoperative neurochemical monitoring during functional neurosurgery. This device supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially and chemically resolved neurotransmitter measurements in the brain.
The FSCV study consisted of a triangle wave scanned between −0.4 and 1 V at a rate of 300 V/second and applied at 10 Hz. All voltages were compared with an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single carbon fiber (r = 2.5 μm) into a glass capillary and pulling the capillary to a microscopic tip by using a pipette puller. The exposed carbon fiber (that is, the sensing region) extended beyond the glass insulation by ~ 100 μm. The neurotransmitter dopamine was selected as the analyte for most trials. Proof-of-principle tests included in vitro flow injection and noise analysis, and in vivo measurements in urethane-anesthetized rats by monitoring dopamine release in the striatum following high-frequency electrical stimulation of the medial forebrain bundle. Direct comparisons were made to a conventional hardwired system.
The WINCS, designed in compliance with FDA-recognized consensus standards for medical electrical device safety, consisted of 4 modules: 1) front-end analog circuit for FSCV (that is, current-to-voltage transducer); 2) Bluetooth transceiver; 3) microprocessor; and 4) direct-current battery. A Windows-XP laptop computer running custom software and equipped with a Universal Serial Bus–connected Bluetooth transceiver served as the base station. Computer software directed wireless data acquisition at 100 kilosamples/second and remote control of FSCV operation and adjustable waveform parameters. The WINCS provided reliable, high-fidelity measurements of dopamine and other neurochemicals such as serotonin, norepinephrine, and ascorbic acid by using FSCV at CFM and by flow injection analysis. In rats, the WINCS detected subsecond striatal dopamine release at the implanted sensor during high-frequency stimulation of ascending dopaminergic fibers. Overall, in vitro and in vivo testing demonstrated comparable signals to a conventional hardwired electrochemical system for FSCV. Importantly, the WINCS reduced susceptibility to electromagnetic noise typically found in an operating room setting.
Taken together, these results demonstrate that the WINCS is well suited for intraoperative neurochemical monitoring. It is anticipated that neurotransmitter measurements at an implanted chemical sensor will prove useful for advancing functional neurosurgery.
PMCID: PMC2808191  PMID: 19425890
deep brain stimulation; neuromodulation; neurotransmitter; voltammetry; dopamine
20.  Wireless Instantaneous Neurotransmitter Concentration System–based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring 
Journal of neurosurgery  2009;111(4):701.
In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time.
The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig.
The WINCS, which is designed in compliance with FDA-recognized consensus standards for medical electrical device safety, successfully measured dopamine, glutamate, and adenosine, both in vitro and in vivo. The WINCS detected striatal dopamine release at the implanted CFM during DBS of the MFB. The DBS-evoked adenosine release in the rat thalamus and MCS-evoked glutamate release in the pig cortex were also successfully measured. Overall, in vitro and in vivo testing demonstrated signals comparable to a commercial hardwired electrochemical system for FPA.
By incorporating FPA, the chemical repertoire of WINCS-measurable neurotransmitters is expanded to include glutamate and other nonelectroactive species for which the evolving field of enzyme-linked biosensors exists. Because many neurotransmitters are not electrochemically active, FPA in combination with enzyme-linked microelectrodes represents a powerful intraoperative tool for rapid and selective neurochemical sampling in important anatomical targets during functional neurosurgery.
PMCID: PMC2814519  PMID: 19425899
deep brain stimulation; motor cortex stimulation; pig; amperometry; dopamine; glutamate; adenosine; rat
21.  Measurements of RF Heating during 3.0T MRI of a Pig Implanted with Deep Brain Stimulator 
Magnetic resonance imaging  2012;31(5):783-788.
To present preliminary, in vivo temperature measurements during MRI of a pig implanted with a deep brain stimulation (DBS) system.
Materials and Methods
DBS system (Medtronic Inc., Minneapolis, MN) was implanted in the brain of an anesthetized pig. 3.0T MRI was performed with a T/R head coil using the low-SAR GRE EPI and IR-prepped GRE sequences (SAR: 0.42 W/kg and 0.39 W/kg, respectively), and the high-SAR 4-echo RF spin echo (SAR: 2.9 W/kg). Fluoroptic thermometry was used to directly measure RF-related heating at the DBS electrodes, and at the implantable pulse generator (IPG). For reference the measurements were repeated in the same pig at 1.5T and, at both field strengths, in a phantom.
At 3.0T, the maximal temperature elevations at DBS electrodes were 0.46 °C and 2.3 °C, for the low- and high-SAR sequences, respectively. No heating was observed on the implanted IPG during any of the measurements. Measurements of in-vivo heating differed from those obtained in the phantom.
The 3.0T MRI using GRE EPI and IR-prepped GRE sequences resulted in local temperature elevations at DBS electrodes of no more than 0.46°C. Although no extrapolation should be made to human exams and much further study will be needed, these preliminary data are encouraging for the future use 3.0T MRI in patients with DBS.
PMCID: PMC3604117  PMID: 23228310
MRI; fMRI; medical device safety; DBS; Deep Brain Stimulation; 3.0T
22.  Pig Lumbar Spine Anatomy and Imaging Guided Lateral Lumbar Puncture: A New Large Animal Model for Intrathecal Drug Delivery 
Journal of neuroscience methods  2013;216(1):10-15.
Intrathecal (IT) administration is an important route of drug delivery. Its modeling in a large animal species is a critical step. Although domestic swine is presently a preferred species in preclinical pharmacology, no proven minimally invasive method has been established to deliver agents into the pig IT space. While a “blind” lumbar puncture (LP) can sample cerebrospinal fluid (CSF), it is unreliable for drug delivery in pigs. Using computed tomography (CT) we determined the underlying anatomical reasons. The pig spinal cord was visualized terminating at the S2-S3 level. The lumbar region contained only small amounts of CSF visualized in the lateral recesses. Additional anatomical constraints identified were ossification of the midline ligaments; overlapping lamina with small interlaminar spaces; and a large bulk of epidural adipose tissue. Accommodating the pig CT anatomy, we developed an injection technique termed lateral LP (LLP) that employs advance planning of the needle path and monitoring of the IT injection progress. Key features of the LLP procedure were choosing a vertebral level without overlapping lamina or spinal ligament ossification; a needle trajectory crossing the midline; and entering the IT space in its lateral recess. Effective IT delivery was validated by injection of contrast media thereby obtaining a CT myelogram. LLP represents a safe and reliable method to deliver agents to the lumbar pig IT space, which can be implemented in a straightforward way by any laboratory with access to CT equipment and is therefore an attractive large animal model for preclinical studies of IT therapies.
PMCID: PMC3910435  PMID: 23518340
lumbar puncture; pig; swine; computed tomography; intrathecal
23.  Disrupting Disordered Neurocircuitry: Treating Refractory Psychiatric Illness With Neuromodulation 
Mayo Clinic Proceedings  2009;84(6):522-532.
Despite the premature and somewhat infamous rise and fall of psychosurgery in the mid-20th century, the current era of functional neuromodulation proffers immense opportunity for surgical intervention in treatment-resistant psychiatric disorders. On the basis of recent successes with novel, focused, less invasive, and reversible treatment strategies for movement disorders, several therapeutic trials have been conducted to investigate the effectiveness of deep brain stimulation (DBS) in treatment-resistant depression, obsessive-compulsive disorder (OCD), and Tourette syndrome. The many anatomic targets for these psychiatric disorders are indicative of both the system-wide effects of DBS and the network-level dysfunction mediating the emotional and cognitive disturbances. To gain insight into the application of neuromodulation therapies and their further advancement, we must elucidate neuroanatomic networks involved in refractory psychiatric illness, the neurophysiological anomalies that contribute to disordered information processing therein, and the local and system-wide modulatory effects of DBS. This review discusses the history of psychosurgical procedures, recent DBS clinical data, current anatomic models of psychopathology, and possible therapeutic mechanisms of action of DBS neuromodulation. Our search criteria for PubMed included combinations of the following terms: neuromodulation, DBS, depression, OCD, Tourette syndrome, mechanism of action, and history. Dates were not restricted. As clinical and basic scientific investigations probe the neuromodulatory effects of DBS in the treatment of refractory neuropsychiatric illness, our knowledge of these disorders and our potential to treat them are rapidly expanding. Indeed, this modern era of neuromodulation may provide the key that unlocks many of the mysteries pertaining to the biological basis of disordered emotional neurocircuitry.
PMCID: PMC2688626  PMID: 19483169
24.  Detection and Monitoring of Neurotransmitters - a Spectroscopic Analysis 
We demonstrate that confocal Raman mapping spectroscopy provides rapid, detailed and accurate neurotransmitter analysis, enabling millisecond time resolution monitoring of biochemical dynamics. As a prototypical demonstration of the power of the method, we present real-time in vitro serotonin, adenosine, and dopamine detection, and dopamine diffusion in an inhomogeneous organic gel, which was used as a substitute for neurologic tissue.
Materials and Methods
Dopamine, adenosine and serotonin were used to prepare neurotransmitter solutions in DI water. The solutions were applied to the surfaces of glass slides, where they inter-diffused. Raman mapping was achieved by detecting non-overlapping spectral signatures characteristic of the neurotransmitters with an alpha 300 WITec confocal Raman system, using 532 nm Nd:YAG laser excitation. Every local Raman spectrum was recorded in milliseconds and complete Raman mapping in a few seconds.
Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific micro-scale image regions. Such information is particularly important for complex, heterogeneous samples, where changes in composition can influence neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method.
Accurate nondestructive characterization for real-time detection of neurotransmitters in inhomogeneous environments without the requirement of sample labeling is a key issue in neuroscience. Our work demonstrates the capabilities of Raman spectroscopy in biological applications, possibly providing a new tool for elucidating the mechanism and kinetics of deep brain stimulation.
PMCID: PMC3537900  PMID: 22989218
Basic science; Raman spectroscopy; neurotransmitters; brain
25.  A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbic acid 
Biosensors & bioelectronics  2012;42:434-438.
A biosensor based on an array of vertically aligned carbon nanofibers (CNFs) grown by plasma enhanced chemical vapor deposition is found to be effective for the simultaneous detection of dopamine (DA) and serotonin (5-HT) in the presence of excess ascorbic acid (AA). The CNF electrode outperforms the conventional glassy carbon electrode (GCE) for both selectivity and sensitivity. Using differential pulse voltammetry (DPV), three distinct peaks are seen for the CNF electrode at 0.13 V, 0.45 V, and 0.70 V for the ternary mixture of AA, DA, and 5-HT. In contrast, the analytes are indistinguishable in a mixture using a GCE. For the CNF electrode, the detection limits are 50 nM for DA and 250 nM for 5-HT.
PMCID: PMC3746014  PMID: 23228495
Biosensor; Dopamine; Serotonin; Carbon nanofiber; Nanoelectrode array

Results 1-25 (45)