PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (54)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
3.  Expanding the SHOC2 Mutation Associated Phenotype of Noonan Syndrome with Loose Anagen Hair: Structural Brain Anomalies and Myelofibrosis 
Noonan syndrome is a heterogenous rasopathy typically presenting with short stature, characteristic facial features, cardiac abnormalities including pulmonic valve stenosis, ASD and hypertrophic cardiomyopathy (HCM), cryptorchidism, ectodermal abnormalities and learning differences. The phenotype is variable, and limited genotype phenotype correlation exists with SOS1 mutations often associated with normal cognition and stature, RAF1 mutations entailing a high HCM risk, and certain PTPN11 mutations predisposing to juvenile myelomonocytic leukemia. The recently identified SHOC2 mutation (p.Ser2Gly) causes Noonan syndrome with loose anagen hair. We report five patients with this mutation. All had skin hyperpigmentation, sparse light colored hair, increased fine wrinkles, ligamentous laxity, developmental delay and 4/4 had a structural cardiac anomaly. Hypotonia and macrocephaly occurred in 4/5 (80%); 3/5 (60%) had polyhydramnios, increased birth weight or required use of a feeding tube. Distinctive brain abnormalities included relative megalencephaly and enlarged subarachnoid spaces suggestive of benign external hydrocephalus, and a relatively small posterior fossa as indicated by a vertical tentorium. The combination of a large brain with a small posterior fossa likely resulted in the high rate of cerebellar tonsillar ectopia (3/4) (75%). Periventricular nodular heterotopia was seen in one patient with a thick and dysplastic corpus callosum. We report on the first hematologic neoplasm, myelofibrosis, in a 2-year-old patient with SHOC2 mutation. Myelofibrosis is exceedingly rare in children and young adults. The absence of a somatic JAK2 mutation, seen in the majority of patients with myelofibrosis, is noteworthy as it suggests that germline or somatic SHOC2 mutations are causally involved in myelofibrosis.
doi:10.1002/ajmg.a.36098
PMCID: PMC3787995  PMID: 23918763
Chiari 1 malformation; Heterotopia; Rasopathy; Noonan syndrome with loose anagen hair; SHOC2; malignancy; myelofibrosis
4.  Phenotypic Analysis of Individuals With Costello Syndrome due to HRAS p.G13C 
Costello syndrome is characterized by severe failure-to-thrive, short stature, cardiac abnormalities (heart defects, tachyarrhythmia, and hypertrophic cardiomyopathy (HCM)), distinctive facial features, a predisposition to papillomata and malignant tumors, postnatal cerebellar overgrowth resulting in Chiari 1 malformation, and cognitive disabilities. De novo germline mutations in the proto-oncogene HRAS cause Costello syndrome. Most mutations affect the glycine residues in position 12 or 13, and more than 80% of patients share p.G12S. To test the hypothesis that subtle genotype–phenotype differences exist, we report the first cohortcomparison between 12 Costello syndrome individuals with p.G13C and individuals with p.G12S. The individuals with p.G13C had many typical findings including polyhydramnios, failure-to-thrive, HCM, macrocephaly with posterior fossa crowding, and developmental delay. Subjectively, their facial features were less coarse. Statistically significant differences included the absence of multifocal atrial tachycardia (P-value =0.033), ulnar deviation of the wrist (P <0.001) and papillomata (P =0.003), and fewer neurosurgical procedures (P =0.024). Fewer individuals with p.G13C had short stature (height below −2 SD) without use of growth hormone (P <0.001). The noteworthy absence of malignant tumors did not reach statistical significance. Novel ectodermal findings were noted in individuals with p.G13C, including loose anagen hair resulting in easily pluckable hair with a matted appearance, different from the tight curls typical for most Costello syndrome individuals. Unusually long eye lashes requiring trimming are a novel finding we termed dolichocilia. These distinctive ectodermal findings suggest a cell type specific effect of this particular mutation. Additional patients are needed to validate these findings.
doi:10.1002/ajmg.a.33884
PMCID: PMC4166651  PMID: 21438134
Costello syndrome; genotype–phenotype correlation; loose anagen hair; rasopathy
5.  Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles 
Human mutation  2013;34(8):1075-1079.
We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker malformation and occipital cephaloceles (ADDWOC) and detected a mutation in the extracellular matrix protein encoding gene NID1. In a second family, protein interaction network analysis identified a mutation in LAMC1, which encodes a NID1 binding partner. Structural modeling the NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings implicate the extracellular matrix in the pathogenesis of Dandy-Walker spectrum disorders.
doi:10.1002/humu.22351
PMCID: PMC3714376  PMID: 23674478
ADDWOC; Dandy-Walker; NID1; LAMC1; Extracellular Matrix
6.  Deletion 16p13.11 uncovers NDE1 mutations on the non-deleted homolog and extends the spectrum of severe microcephaly to include fetal brain disruption 
Deletions of 16p13.11 have been associated with a variety of phenotypes, and have been also found in normal individuals. We report on two unrelated patients with severe microcephaly, agenesis of the corpus callosum, scalp rugae, and a fetal brain disruption-like phenotype with inherited deletions of 16p13.11. The first patient was subsequently found on whole exome sequencing to have a nonsense mutation (p.R44X) in NDE1 with the non-deleted chromosome 16 homolog. We then undertook copy number studies of 16p13.11 and sequencing of NDE1 in nine additional patients with a similar severe microcephaly, agenesis of the corpus callosum, and fetal brain disruption-like phenotype. The second patient was found to have an inherited deletion of the entire NDE1 gene combined with a frameshift mutation (c.1020-1021het_delGA) in the non-deleted NDE1. These observations broaden the phenotype seen in NDE1-related microcephaly to include fetal brain disruption. These data also represent the second described syndrome, after Bernard-Soulier syndrome, where an autosomal recessive condition combines an inherited segmental duplication mediated deletion with a mutation in a gene within the non-deleted homolog. Finally, we performed informatics analysis of the 16p13.11 gene content, and found that there are many genes with in the region with evidence for role(s) in brain development. Sequencing of other candidate genes in this region in patients with deletion 16p13.11 and more severe neurophenotypes may be warranted.
doi:10.1002/ajmg.a.35969
PMCID: PMC3689850  PMID: 23704059
Deletion 16p13.11; NDE1; whole exome sequencing; fetal brain disruption; microcephaly; agenesis of the corpus callosum
7.  CDKL5 and ARX mutations in males with early-onset epilepsy 
Pediatric neurology  2013;48(5):367-377.
Mutations in CDKL5 and ARX are known causes of early-onset epilepsy and severe developmental delay in males and females. While numerous males with ARX mutations associated with various phenotypes have been reported in the literature, the majority of CDKL5 mutations have been identified in females with a phenotype characterized by early-onset epilepsy, severe global developmental delay, absent speech, and stereotypic hand movements. To date, only ten males with CDKL5 mutations have been reported. Our retrospective study reports on the clinical, neuroimaging and molecular findings of 18 males with early-onset epilepsy caused by either CDKL5 or ARX mutations. The 18 patients include eight new males with CDKL5 mutations and ten with ARX mutations identified through sequence analysis of 266 and 346 males, respectively, at our molecular diagnostic laboratory. Our large data set therefore expands on the number of reported males with CDKL5 mutations and highlights that aberrations of CDKL5 and ARX combined are an important consideration in the genetic forms of early-onset epilepsy.
doi:10.1016/j.pediatrneurol.2012.12.030
PMCID: PMC3742321  PMID: 23583054
8.  MEF2C Haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways 
Neurogenetics  2013;14(2):99-111.
MEF2C haploinsufficiency syndrome is an emerging neurodevelopmental disorder associated with intellectual disability, autistic features, epilepsy, and abnormal movements. We report 16 new patients with MEF2C haploinsufficiency, including the oldest reported patient with MEF2C deletion at 5q14.3. We detail the neurobehavioral phenotype, epilepsy, and abnormal movements, and compare our subjects with those previously reported in the literature. We also investigate Mef2c expression in the developing mouse forebrain. A spectrum of neurofunctional deficits emerges, with hyperkinesis a consistent finding. Epilepsy varied from absent to severe, and included intractable myoclonic seizures and infantile spasms. Subjects with partial MEF2C deletion were statistically less likely to have epilepsy. Finally, we confirm that Mef2c is present both in dorsal primary neuroblasts and ventral gamma-aminobutyric acid(GABA)ergic interneurons in the forebrain of the developing mouse. Given interactions with several key neurodevelopmental genes such as ARX, FMR1, MECP2, and TBR1, it appears that MEF2C plays a role in several developmental stages of both dorsal and ventral neuronal cell types.
doi:10.1007/s10048-013-0356-y
PMCID: PMC3773516  PMID: 23389741
MEF2C haploinsufficiency; Intellectual disability; Autism; Infant-onset myoclonic epilepsy; Infantile spasms; Hyperkinesis; Deletion 5q14.3
9.  Mutations in STAMBP, encoding a deubiquitinating enzyme, cause Microcephaly-Capillary Malformation syndrome 
Nature genetics  2013;45(5):556-562.
Microcephaly-capillary malformation (MIC-CAP) syndrome exhibits severe microcephaly with progressive cortical atrophy, intractable epilepsy, profound developmental delay and multiple small capillary malformations on the skin. We employed whole-exome sequencing of five patients with MIC-CAP syndrome and identified novel recessive mutations in STAMBP, a gene encoding the deubiquitinating (DUB) isopeptidase STAMBP (STAM-binding protein)/AMSH (Associated Molecule with the SH3 domain of STAM), that plays a key role in cell surface receptor-mediated endocytosis and sorting. Patient cell lines showed reduced STAMBP expression associated with accumulation of ubiquitin-conjugated protein aggregates, elevated apoptosis and insensitive activation of the RAS-MAPK and PI3K-AKT-mTOR pathways. The latter cellular phenotype is significant considering the established connection between these pathways and their association with vascular and capillary malformations. Furthermore, our findings of a congenital human disorder caused by a defective DUB protein that functions in endocytosis, implicates ubiquitin-conjugate aggregation and elevated apoptosis as factors potentially influencing the progressive neuronal loss underlying MIC-CAP.
doi:10.1038/ng.2602
PMCID: PMC4000253  PMID: 23542699 CAMSID: cams4064
10.  Cerebellar and posterior fossa malformations in patients with autism-associated chromosome 22q13 terminal deletion 
The 22q13.3 deletion causes a neurodevelopmental syndrome, also known as Phelan-McDermid syndrome (MIM #606232), characterized by developmental delay and severe delay or absence of expressive speech. Two patients with hemizygous chromosome 22q13.3 telomeric deletion were referred to us when brain-imaging studies revealed cerebellar vermis hypoplasia (CBVH). To determine whether developmental abnormalities of the cerebellum are a consistent feature of the 22q13.3 deletion syndrome, we examined brain-imaging studies for 10 unrelated subjects with 22q13 terminal deletion. In 7 cases where the availability of DNA and array technology allowed, we mapped deletion boundaries using comparative intensity analysis with single nucleotide polymorphism (SNP) microarrays. Approximate deletion boundaries for 3 additional cases were derived from clinical or published molecular data. We also examined brain-imaging studies for a patient with an intragenic SHANK3 mutation. We report the first brain-imaging data showing that some patients with 22q13 deletions have severe posterior CBVH, and one individual with a SHANK3 mutation has a normal cerebellum. This genotype-phenotype study suggests that the 22q13 deletion phenotype includes abnormal posterior fossa structures that are unlikely to be attributed to SHANK3 disruption. Other genes in the region, including PLXNB2 and MAPK8IP2, display brain expression patterns and mouse mutant phenotypes critical for proper cerebellar development. Future studies of these genes may elucidate their relationship to 22q13.3 deletion phenotypes.
doi:10.1002/ajmg.a.35700
PMCID: PMC3733662  PMID: 23225497
cerebellum; chromosome; deletion; SHANK3
11.  Both Rare and De Novo Copy Number Variants Are Prevalent in Agenesis of the Corpus Callosum but Not in Cerebellar Hypoplasia or Polymicrogyria 
PLoS Genetics  2013;9(10):e1003823.
Agenesis of the corpus callosum (ACC), cerebellar hypoplasia (CBLH), and polymicrogyria (PMG) are severe congenital brain malformations with largely undiscovered causes. We conducted a large-scale chromosomal copy number variation (CNV) discovery effort in 255 ACC, 220 CBLH, and 147 PMG patients, and 2,349 controls. Compared to controls, significantly more ACC, but unexpectedly not CBLH or PMG patients, had rare genic CNVs over one megabase (p = 1.48×10−3; odds ratio [OR] = 3.19; 95% confidence interval [CI] = 1.89–5.39). Rare genic CNVs were those that impacted at least one gene in less than 1% of the combined population of patients and controls. Compared to controls, significantly more ACC but not CBLH or PMG patients had rare CNVs impacting over 20 genes (p = 0.01; OR = 2.95; 95% CI = 1.69–5.18). Independent qPCR confirmation showed that 9.4% of ACC patients had de novo CNVs. These, in comparison to inherited CNVs, preferentially overlapped de novo CNVs previously observed in patients with autism spectrum disorders (p = 3.06×10−4; OR = 7.55; 95% CI = 2.40–23.72). Interestingly, numerous reports have shown a reduced corpus callosum area in autistic patients, and diminished social and executive function in many ACC patients. We also confirmed and refined previously known CNVs, including significantly narrowing the 8p23.1-p11.1 duplication present in 2% of our current ACC cohort. We found six novel CNVs, each in a single patient, that are likely deleterious: deletions of 1p31.3-p31.1, 1q31.2-q31.3, 5q23.1, and 15q11.2-q13.1; and duplications of 2q11.2-q13 and 11p14.3-p14.2. One ACC patient with microcephaly had a paternally inherited deletion of 16p13.11 that included NDE1. Exome sequencing identified a recessive maternally inherited nonsense mutation in the non-deleted allele of NDE1, revealing the complexity of ACC genetics. This is the first systematic study of CNVs in congenital brain malformations, and shows a much higher prevalence of large gene-rich CNVs in ACC than in CBLH and PMG.
Author Summary
Here, we systematically test the genetic etiology of three common developmental brain malformations: agenesis of the corpus callosum (ACC), cerebellar hypoplasia (CBLH), and polymicrogyria (PMG) by copy number variation (CNV) analysis in a large cohort of brain malformation patients and controls. We found significantly more ACC but not CBLH or PMG patients with rare genic CNVs over one megabase and with rare CNVs impacting over 20 genes when compared with controls. De novo CNVs were found in 9.4% of ACC patients, and interestingly many such CNVs overlapped with de novo CNVs observed in autism. Notably, numerous studies have demonstrated a reduction in the corpus callosum area in autistic brains. Our analysis also refined previously known large CNVs that cause these malformations, and identified six novel CNVs that are likely deleterious. One ACC patient had inherited a deletion from the father which, through exome sequencing, was found to uncover a recessive nonsense mutation in NDE1 on the non-deleted allele inherited from the mother. Our study is the first to systematically evaluate the burden of rare genic CNVs in congenital brain malformations and shows that large gene-rich CNVs are more common in ACC than in CBLH and PMG.
doi:10.1371/journal.pgen.1003823
PMCID: PMC3789824  PMID: 24098143
12.  Beyond Gómez-López-Hernández Syndrome: Recurring Phenotypic Themes in Rhombencephalosynapsis 
Rhombencephalosynapsis (RES) is an uncommon cerebellar malformation characterized by fusion of the hemispheres without an intervening vermis. Frequently described in association with Gómez-López-Hernández syndrome, RES also occurs in conjunction with VACTERL features and with holoprosencephaly (HPE). We sought to determine the full phenotypic spectrum of RES in a large cohort of patients. Information was obtained through database review, patient questionnaire, radiographic and morphologic assessment, and statistical analysis. We assessed 53 patients. 33 had alopecia, 3 had trigeminal anesthesia, 14 had VACTERL features and 2 had HPE with aventriculy. Specific craniofacial features were seen throughout the cohort, but were more common in patients with alopecia. We noted substantial overlap between groups. We conclude that although some distinct subgroups can be delineated, the overlapping features seen in our cohort suggest an underlying spectrum of RES-associated malformations rather than a collection of discrete syndromes.
doi:10.1002/ajmg.a.35561
PMCID: PMC3448816  PMID: 22965664
Rhombencephalosynapsis; Gómez-López-Hernández syndrome; Congenital Triangular Alopecia; Holoprosencephaly; Aventriculy; VACTERL; Developmental Field Defect
13.  Peritrigonal and temporo-occipital heterotopia with corpus callosum and cerebellar dysgenesis 
Neurology  2012;79(12):1244-1251.
Objective:
To describe a homogeneous subtype of periventricular nodular heterotopia (PNH) as part of a newly defined malformation complex.
Methods:
Observational study including review of brain MRI and clinical findings of a cohort of 50 patients with PNH in the temporo-occipital horns and trigones, mutation analysis of the FLNA gene, and anatomopathologic study of a fetal brain.
Results:
There were 28 females and 22 males. All were sporadic with the exception of an affected mother and son. Epilepsy occurred in 62%, cerebellar signs in 56%, cognitive impairment in 56%, and autism in 12%. Seventy percent were referred within the 3rd year of life. Imaging revealed a normal cerebral cortex in 76% and abnormal cortical folding in 24%. In all patients the hippocampi were under-rotated and in 10% they merged with the heterotopia. Cerebellar dysgenesis was observed in 84% and a hypoplastic corpus callosum in 60%. There was no gender bias or uneven gender distribution of clinical and anatomic severity. No mutations of FLNA occurred in 33 individuals examined. Heterotopia in the fetal brain revealed cytoarchitectonic characteristics similar to those associated with FLNA mutations; cortical pathology was not typical of polymicrogyria. Cerebellar involvement was more severe and the hippocampi appeared simple and under-rotated.
Conclusions:
This series delineates a malformation complex in which PNH in the trigones and occipito-temporal horns is associated with hippocampal, corpus callosum, and cerebellar dysgenesis. This subtype of PNH is distinct from classic PNH caused by FLNA mutations.
doi:10.1212/WNL.0b013e31826aac88
PMCID: PMC3440449  PMID: 22914838
14.  Neuropathology of brain and spinal malformations in a case of monosomy 1p36 
Monosomy 1p36 is the most common subtelomeric chromosomal deletion linked to mental retardation and seizures. Neuroimaging studies suggest that monosomy 1p36 is associated with brain malformations including polymicrogyria and nodular heterotopia, but the histopathology of these lesions is unknown. Here we present postmortem neuropathological findings from a 10 year-old girl with monosomy 1p36, who died of respiratory complications. The findings included micrencephaly, periventricular nodular heterotopia in occipitotemporal lobes, cortical dysgenesis resembling polymicrogyria in dorsolateral frontal lobes, hippocampal malrotation, callosal hypoplasia, superiorly rotated cerebellum with small vermis, and lumbosacral hydromyelia. The abnormal cortex exhibited “festooned” (undulating) supragranular layers, but no significant fusion of the molecular layer. Deletion mapping demonstrated single copy loss of a contiguous 1p36 terminal region encompassing many important neurodevelopmental genes, among them four HES genes implicated in regulating neural stem cell differentiation, and TP73, a monoallelically expressed gene. Our results suggest that brain and spinal malformations in monosomy 1p36 may be more extensive than previously recognized, and may depend on the parental origin of deleted genes. More broadly, our results suggest that specific genetic disorders may cause distinct forms of cortical dysgenesis.
doi:10.1186/2051-5960-1-45
PMCID: PMC3893467  PMID: 24252393
Periventricular nodular heterotopia; Hippocampal malrotation; Cortical dysgenesis; Malformations of cortical development; Hydromyelia; Mental retardation; Epilepsy
15.  Diencephalic–mesencephalic junction dysplasia: a novel recessive brain malformation 
Brain  2012;135(8):2416-2427.
We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic–mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic–mesencephalic junction with a characteristic ‘butterfly’-like contour of the midbrain on axial sections. Additional imaging features included variable degrees of supratentorial ventricular dilatation and hypoplasia to complete agenesis of the corpus callosum. Diffusion tensor imaging showed diffuse hypomyelination and lack of an identifiable corticospinal tract. All patients displayed severe cognitive impairment, post-natal progressive microcephaly, axial hypotonia, spastic quadriparesis and seizures. Autistic features were noted in older cases. Talipes equinovarus, non-obstructive cardiomyopathy and persistent hyperplastic primary vitreous were additional findings in two families. One of the patients required shunting for hydrocephalus; however, this yielded no change in ventricular size suggestive of dysplasia rather than obstruction. We propose the term ‘diencephalic–mesencephalic junction dysplasia’ to characterize this autosomal recessive malformation.
doi:10.1093/brain/aws162
PMCID: PMC3407423  PMID: 22822038
diencephalon; mesencephalon; mental retardation; brainstem malformation; brain wiring
16.  De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome 
Nature genetics  2012;44(4):440-S2.
Brain malformations are individually rare but collectively common causes of developmental disabilities1–3. Many forms occur sporadically and have reduced reproductive fitness, pointing towards a causative role for de novo mutations4,5. Here we report our studies of Baraitser-Winter syndrome, a well-defined syndrome characterized by distinct craniofacial features, ocular colobomata and a neuronal migration defect6,7. By using whole-exome sequencing in three proband-parent trios, we identified de novo missense changes in the cytoplasmic actin genes ACTB and ACTG1 in one and two probands, respectively. Sequencing of both genes in fifteen additional patients revealed disease-causing mutations in all probands, including two recurrent de novo mutations (ACTB p.Arg196His and ACTG1 p.Ser155Phe). Our results confirm that trio-based exome sequencing is a powerful approach to discover the genes causing sporadic developmental disorders, emphasize the overlapping roles of cytoplasmic actins in development, and suggest that Baraitser-Winter syndrome is the predominant phenotype associated with mutations of these two genes.
doi:10.1038/ng.1091
PMCID: PMC3677859  PMID: 22366783
17.  PRKDC mutations in a SCID patient with profound neurological abnormalities  
The Journal of Clinical Investigation  2013;123(7):2969-2980.
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs; encoded by PRKDC) functions in DNA non-homologous end-joining (NHEJ), the major DNA double strand break (DSB) rejoining pathway. NHEJ also functions during lymphocyte development, joining V(D)J recombination intermediates during antigen receptor gene assembly. Here, we describe a patient with compound heterozygous mutations in PRKDC, low DNA-PKcs expression, barely detectable DNA-PK kinase activity, and impaired DSB repair. In a heterologous expression system, we found that one of the PRKDC mutations inactivated DNA-PKcs, while the other resulted in dramatically diminished but detectable residual function. The patient suffered SCID with reduced or absent T and B cells, as predicted from PRKDC-deficient animal models. Unexpectedly, the patient was also dysmorphic; showed severe growth failure, microcephaly, and seizures; and had profound, globally impaired neurological function. MRI scans revealed microcephaly-associated cortical and hippocampal dysplasia and progressive atrophy over 2 years of life. These neurological features were markedly more severe than those observed in patients with deficiencies in other NHEJ proteins. Although loss of DNA-PKcs in mice, dogs, and horses was previously shown not to impair neuronal development, our findings demonstrate a stringent requirement for DNA-PKcs during human neuronal development and suggest that high DNA-PK protein expression is required to sustain efficient pre- and postnatal neurogenesis.
doi:10.1172/JCI67349
PMCID: PMC3999051  PMID: 23722905
18.  Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity 
Brain  2012;135(5):1370-1386.
Rhombencephalosynapsis is a midline brain malformation characterized by missing cerebellar vermis with apparent fusion of the cerebellar hemispheres. Rhombencephalosynapsis can be seen in isolation or together with other central nervous system and extra-central nervous system malformations. Gómez-López-Hernández syndrome combines rhombencephalosynapsis with parietal/temporal alopecia and sometimes trigeminal anaesthesia, towering skull shape and dysmorphic features. Rhombencephalosynapsis can also be seen in patients with features of vertebral anomalies, anal atresia, cardiovascular anomalies, trachea–oesophageal fistula, renal anomalies, limb defects (VACTERL) association. Based on a comprehensive evaluation of neuroimaging findings in 42 patients with rhombencephalosynapsis, we propose a spectrum of severity, ranging from mild (the partial absence of nodulus, anterior and posterior vermis), to moderate (the absence of posterior vermis with some anterior vermis and nodulus present), to severe (the absence of posterior and anterior vermis with some nodulus present), to complete (the absence of the entire vermis including nodulus). We demonstrate that the severity of rhombencephalosynapsis correlates with fusion of the tonsils, as well as midbrain abnormalities including aqueductal stenosis and midline fusion of the tectum. Rhombencephalosynapsis is also associated with multiple forebrain abnormalities including absent olfactory bulbs, dysgenesis of the corpus callosum, absent septum pellucidum and, in rare patients, atypical forms of holoprosencephaly. The frequent association between rhombencephalosynapsis and aqueductal stenosis prompted us to evaluate brain magnetic resonance images in other patients with aqueductal stenosis at our institution, and remarkably, we identified rhombencephalosynapsis in 9%. Strikingly, subjects with more severe rhombencephalosynapsis have more severely abnormal neurodevelopmental outcome, as do subjects with holoprosencephaly and patients with VACTERL features. In summary, our data provide improved diagnostic and prognostic information, and support disruption of dorsal–ventral patterning as a mechanism underlying rhombencephalosynapsis.
doi:10.1093/brain/aws065
PMCID: PMC3338925  PMID: 22451504
rhombencephalosynapsis; Gómez-López-Hernández syndrome; aqueductal stenosis; holoprosencephaly; hydrocephalus; VACTERL
20.  De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes 
Nature genetics  2012;44(8):934-940.
Megalencephaly-capillary malformation (MCAP) and megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndromes are sporadic overgrowth disorders associated with markedly enlarged brain size and other recognizable features1-5. We performed exome sequencing in three families with MCAP or MPPH and confirmed our initial observations in exomes from 7 MCAP and 174 control individuals, as well as in 40 additional megalencephaly subjects using a combination of Sanger sequencing, restriction-enzyme assays, and targeted deep sequencing. We identified de novo germline or postzygotic mutations in three core components of the phosphatidylinositol-3-kinase (PI3K)/AKT pathway. These include two mutations of AKT3, one recurrent mutation of PIK3R2 in 11 unrelated MPPH families, and 15 mostly postzygotic mutations of PIK3CA in 23 MCAP and one MPPH patients. Our data highlight the central role of PI3K/AKT signaling in vascular, limb and brain development, and emphasize the power of massively parallel sequencing in a challenging context of phenotypic and genetic heterogeneity combined with postzygotic mosaicism.
doi:10.1038/ng.2331
PMCID: PMC3408813  PMID: 22729224
21.  Copy number variants and infantile spasms: evidence for abnormalities in ventral forebrain development and pathways of synaptic function 
European Journal of Human Genetics  2011;19(12):1238-1245.
Infantile spasms (ISS) are an epilepsy disorder frequently associated with severe developmental outcome and have diverse genetic etiologies. We ascertained 11 subjects with ISS and novel copy number variants (CNVs) and combined these with a new cohort with deletion 1p36 and ISS, and additional published patients with ISS and other chromosomal abnormalities. Using bioinformatics tools, we analyzed the gene content of these CNVs for enrichment in pathways of pathogenesis. Several important findings emerged. First, the gene content was enriched for the gene regulatory network involved in ventral forebrain development. Second, genes in pathways of synaptic function were overrepresented, significantly those involved in synaptic vesicle transport. Evidence also suggested roles for GABAergic synapses and the postsynaptic density. Third, we confirm the association of ISS with duplication of 14q12 and maternally inherited duplication of 15q11q13, and report the association with duplication of 21q21. We also present a patient with ISS and deletion 7q11.3 not involving MAGI2. Finally, we provide evidence that ISS in deletion 1p36 may be associated with deletion of KLHL17 and expand the epilepsy phenotype in that syndrome to include early infantile epileptic encephalopathy. Several of the identified pathways share functional links, and abnormalities of forebrain synaptic growth and function may form a common biologic mechanism underlying both ISS and autism. This study demonstrates a novel approach to the study of gene content in subjects with ISS and copy number variation, and contributes further evidence to support specific pathways of pathogenesis.
doi:10.1038/ejhg.2011.121
PMCID: PMC3230360  PMID: 21694734
infantile spasms; autism; bioinformatics; copy number variation; deletion 1p36 syndrome
22.  A genetic and biologic classification of infantile spasms 
Pediatric Neurology  2011;45(6):355-367.
Infantile spasms are an age-dependent epilepsy that are highly associated with cognitive impairment, autism, and movement disorders. Previous classification systems have focused on a distinction between symptomatic and cryptogenic etiologies, and have not kept pace with the recent discoveries of mutations in genes in key pathways of central nervous system development in patients with infantile spasms. Children with certain genetic syndromes are much more likely to have infantile spasms, and we review the literature to propose a genetic classification of these disorders. Children with these genetic associations with infantile spasms also have phenotypes beyond epilepsy that may be explained by recent advances in the understanding of underlying biological mechanisms. We therefore also propose a biologic classification of the genes highly associated with infantile spasms, and articulate models for infantile spasms pathogenesis based on that data. The two best described pathways of pathogenesis are abnormalities in the gene regulatory network of GABAergic forebrain development, and abnormalities in molecules expressed at the synapse. We intend for these genetic and biologic classifications to be flexible, and hope that they will encourage much needed progress in syndrome recognition, clinical genetic testing, and ultimately the development of new therapies that target specific pathways of pathogenesis.
doi:10.1016/j.pediatrneurol.2011.08.010
PMCID: PMC3397192  PMID: 22114996
Infantile spasms; developmental epilepsy; autism; movement disorders; gene regulatory networks
23.  Long Term Survival in TARP Syndrome and Confirmation of RBM10 as the Disease Causing Gene 
TARP syndrome, comprising Talipes equinovarus, Atrial septal defect, Robin sequence (micrognathia, glossoptosis, and cleft palate), and Persistence of the left superior vena cava, is an X-linked condition with pre- or postnatal lethality in affected males. Based on linkage studies and massively parallel sequencing of X-chromosome exons in two families, the disease causing gene was identified as RBM10. We identified a maternally inherited frameshift mutation in an unrelated patient, confirming RBM10 as the disease gene. This is the first reported individual with TARP syndrome who survived past early infancy, thus expanding the phenotypic spectrum of this disorder. In addition to the characteristic cleft palate, atrial septal defect and persistent superior vena cava, he had low-set and posteriorly angulated ears, upslanting palpebral fissures, cryptorchidism and structural brain abnormalities including partial agenesis of the corpus callosum, dysplastic enlarged caudate, and cerebellar hypoplasia with megacisterna magna. Preterm delivery, suspected pulmonary hypoplasia and pulmonary hypertension resulted in chronic lung disease. At the age of 3 7/12 years, he remained ventilator-dependent at night, and he was fed exclusively through a gastro-jejunal tube. Sensorineural hearing loss required a hearing aid. Optic atrophy and cortical visual impairment were noted. He was unable to sit independently, was non-communicative and he had severe intellectual disability. Atrial flutter required recurrent ablation of intra-atrial re-entry pathways. The mother's heterozygosity for the RBM10 mutation underscored the importance of accurate diagnosis and counseling for TARP syndrome.
doi:10.1002/ajmg.a.34190
PMCID: PMC3183328  PMID: 21910224
ASD; cryptorchidism; persistent left superior vena cava; Pierre-Robin sequence; RBM10; talipes equinovarus; X-linked
24.  The Microcephaly-Capillary Malformation Syndrome 
We report on three children from two families with a new pattern recognition malformation syndrome consisting of severe congenital microcephaly (MIC), intractable epilepsy including infantile spasms, and generalized capillary malformations that was first reported recently in this journal [Carter et al. (2011); Am J Med Genet A 155: 301–306]. Two of our reported patients are an affected brother and sister, suggesting this is an autosomal recessive severe congenital MIC syndrome.
doi:10.1002/ajmg.a.34118
PMCID: PMC3428374  PMID: 21815250
microcephaly with simplified gyri; capillary malformations; infantile spasms; optic nerve hypoplasia
25.  New Recessive Syndrome of Microcephaly, Cerebellar Hypoplasia, and Congenital Heart Conduction Defect 
We identified a two-branch consanguineous family in which four affected members (three females and one male) presenting with constitutive growth delay, severe psychomotor retardation, microcephaly, cerebellar hypoplasia, and second degree heart block. They also shared distinct facial features and similar appearance of their hands and feet. Childhood-onset insulin-dependent diabetes mellitus developed in one affected child around the age of 9 years. Molecular analysis excluded mutations in potentially related genes such as PTF1A, EIF2AK3, EOMES and WDR62. This condition appears to be unique of other known conditions, suggesting a unique clinical entity of autosomal recessive mode of inheritance.
doi:10.1002/ajmg.a.34078
PMCID: PMC3415795  PMID: 22002884
Microcephaly; insulin-dependent diabetes; cerebellar hypoplasia; mental retardation; heart block

Results 1-25 (54)