Search tips
Search criteria

Results 1-1 (1)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Mechanisms of Cell Cycle Control Revealed by a Systematic and Quantitative Overexpression Screen in S. cerevisiae 
PLoS Genetics  2008;4(7):e1000120.
Regulation of cell cycle progression is fundamental to cell health and reproduction, and failures in this process are associated with many human diseases. Much of our knowledge of cell cycle regulators derives from loss-of-function studies. To reveal new cell cycle regulatory genes that are difficult to identify in loss-of-function studies, we performed a near-genome-wide flow cytometry assay of yeast gene overexpression-induced cell cycle delay phenotypes. We identified 108 genes whose overexpression significantly delayed the progression of the yeast cell cycle at a specific stage. Many of the genes are newly implicated in cell cycle progression, for example SKO1, RFA1, and YPR015C. The overexpression of RFA1 or YPR015C delayed the cell cycle at G2/M phases by disrupting spindle attachment to chromosomes and activating the DNA damage checkpoint, respectively. In contrast, overexpression of the transcription factor SKO1 arrests cells at G1 phase by activating the pheromone response pathway, revealing new cross-talk between osmotic sensing and mating. More generally, 92%–94% of the genes exhibit distinct phenotypes when overexpressed as compared to their corresponding deletion mutants, supporting the notion that many genes may gain functions upon overexpression. This work thus implicates new genes in cell cycle progression, complements previous screens, and lays the foundation for future experiments to define more precisely roles for these genes in cell cycle progression.
Author Summary
All cells require proper cell cycle regulation; failure leads to numerous human diseases. Cell cycle mechanisms are broadly conserved across eukaryotes, with many key regulatory genes known. Nonetheless, our knowledge of regulators is incomplete. Many classic studies have analyzed yeast loss-of-function mutants to identify cell cycle genes. Studies have also implicated genes based upon their overexpression phenotypes, but the effects of gene overexpression on the cell cycle have not been quantified for all yeast genes. We individually quantified the effect of overexpression on cell cycle progression for nearly all (91%) of yeast genes, and we report the 108 genes causing the most significant and reproducible cell cycle defects, most of which have not been previously observed. We characterize three genes in more detail, implicating one in chromosomal segregation and mitotic spindle formation. A second affects mitotic stability and the DNA damage checkpoint. Curiously, overexpression of a third gene, SKO1, arrests the cell cycle by activating the pheromone response pathway, with cells mistakenly behaving as if mating pheromone is present. These results establish a basis for future experiments elucidating precise cell cycle roles for these genes. Similar assays in human cells could help further clarify the many connections between cell cycle control and cancers.
PMCID: PMC2438615  PMID: 18617996

Results 1-1 (1)