PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Prickle1 mutation causes planar cell polarity and directional cell migration defects associated with cardiac outflow tract anomalies and other structural birth defects 
Biology Open  2016;5(3):323-335.
ABSTRACT
Planar cell polarity (PCP) is controlled by a conserved pathway that regulates directional cell behavior. Here, we show that mutant mice harboring a newly described mutation termed Beetlejuice (Bj) in Prickle1 (Pk1), a PCP component, exhibit developmental phenotypes involving cell polarity defects, including skeletal, cochlear and congenital cardiac anomalies. Bj mutants die neonatally with cardiac outflow tract (OFT) malalignment. This is associated with OFT shortening due to loss of polarized cell orientation and failure of second heart field cell intercalation mediating OFT lengthening. OFT myocardialization was disrupted with cardiomyocytes failing to align with the direction of cell invasion into the outflow cushions. The expression of genes mediating Wnt signaling was altered. Also noted were shortened but widened bile ducts and disruption in canonical Wnt signaling. Using an in vitro wound closure assay, we showed Bj mutant fibroblasts cannot establish polarized cell morphology or engage in directional cell migration, and their actin cytoskeleton failed to align with the direction of wound closure. Unexpectedly, Pk1 mutants exhibited primary and motile cilia defects. Given Bj mutant phenotypes are reminiscent of ciliopathies, these findings suggest Pk1 may also regulate ciliogenesis. Together these findings show Pk1 plays an essential role in regulating cell polarity and directional cell migration during development.
Summary: Outflow tract malalignment and multiple birth defects observed in the Prickle1 mutant may arise from cell polarity perturbation, which may involve disruptions in Wnt signaling and of cilia function.
doi:10.1242/bio.015750
PMCID: PMC4810743  PMID: 26883626
Biliary atresia; Cell polarity; Outflow tract; Prickle1
2.  Fuz Mutant Mice Reveal Shared Mechanisms between Ciliopathies and FGF-Related Syndromes 
Developmental Cell  2013;25(6):623-635.
Summary
Ciliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for a common craniofacial anomaly and identify links between two classes of human disease: FGF-hyperactivation syndromes and ciliopathies.
Highlights
•A genetic model for high arched palate, commonly seen in human craniofacial syndromes•In ciliopathic mice, Fgf8 overexpression leads to cranial neural crest hyperplasia•Enlargement of the maxillary primordia underlies high arched palate in Fuz mutants•An etiological link between ciliopathies and FGF-hyperactivation syndromes
High arched palate is common to many human disorders, including ciliopathies and craniosynostosis syndromes. Tabler et al. develop and analyze a genetic model of high arched palate; they conclude that embryonic changes in neural crest and fibroblast growth factor signaling underlie this unusual phenotype.
doi:10.1016/j.devcel.2013.05.021
PMCID: PMC3697100  PMID: 23806618
3.  Novel Reporter Alleles of GSK-3α and GSK-3β 
PLoS ONE  2012;7(11):e50422.
Glycogen Synthase Kinase 3 (GSK-3) is a key player in development, physiology and disease. Because of this, GSK-3 inhibitors are increasingly being explored for a variety of applications. In addition most analyses focus on GSK-3β and overlook the closely related protein GSK-3α. Here, we describe novel GSK-3α and GSK-3β mouse alleles that allow us to visualise expression of their respective mRNAs by tracking β-galactosidase activity. We used these new lacZ alleles to compare expression in the palate and cranial sutures and found that there was indeed differential expression. Furthermore, both are loss of function alleles and can be used to generate homozygous mutant mice; in addition, excision of the lacZ cassette from GSK-3α creates a Cre-dependent tissue-specific knockout. As expected, GSK3α mutants were viable, while GSK3β mutants died after birth with a complete cleft palate. We also assessed the GSK-3α mutants for cranial and sternal phenotypes and found that they were essentially normal. Finally, we observed gestational lethality in compound GSK-3β−/−; GSK3α+/− mutants, suggesting that GSK-3 dosage is critical during embryonic development.
doi:10.1371/journal.pone.0050422
PMCID: PMC3503927  PMID: 23185619
4.  The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis, and mouse embryonic development 
Nature cell biology  2009;11(10):1225-1232.
The planar cell polarity (PCP) signaling pathway is essential for embryonic development because it governs diverse cellular behaviors, and the “core PCP” proteins, such as Dishevelled and Frizzled, have been extensively characterized1–4. By contrast, the “PCP effector” proteins, such as Intu and Fuz, remain largely unstudied5, 6. These proteins are essential for PCP signaling, but they have never been investigated in a mammal and their cell biological activities remain entirely unknown. We report here that Fuz mutant mice display neural tube defects, skeletal dysmorphologies, and Hedgehog signaling defects stemming from disrupted ciliogenesis. Using bioinformatics and imaging of an in vivo mucociliary epithelium, we establish a central role for Fuz in membrane trafficking, showing that Fuz is essential for trafficking of cargo to basal bodies and to the apical tips of cilia. Fuz is also essential for exocytosis in secretory cells. Finally, we identify a novel, Rab-related small GTPase as a Fuz interaction partner that is also essential for ciliogenesis and secretion. These results are significant because they provide novel insights into the mechanisms by which developmental regulatory systems like PCP signaling interface with fundamental cellular systems such as the vesicle trafficking machinery.
doi:10.1038/ncb1966
PMCID: PMC2755648  PMID: 19767740

Results 1-4 (4)