Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Physical and Functional Interaction between the Methyltransferase Bud23 and the Essential DEAH-Box RNA Helicase Ecm16 
Molecular and Cellular Biology  2014;34(12):2208-2220.
The small ribosomal subunit assembles cotranscriptionally on the nascent primary transcript. Cleavage at site A2 liberates the pre-40S subunit. We previously identified Bud23 as a conserved eukaryotic methyltransferase that is required for efficient cleavage at A2. Here, we report that Bud23 physically and functionally interacts with the DEAH-box RNA helicase Ecm16 (also known as Dhr1). Ecm16 is also required for cleavage at A2. We identified mutations in ECM16 that suppressed the growth and A2 cleavage defects of a bud23Δ mutant. RNA helicases often require protein cofactors to provide substrate specificity. We used yeast (Saccharomyces cerevisiae) two-hybrid analysis to map the binding site of Bud23 on Ecm16. Despite the physical and functional interaction between these factors, mutations that disrupted the interaction, as assayed by two-hybrid analysis, did not display a growth defect. We previously identified mutations in UTP2 and UTP14 that suppressed bud23Δ. We suggest that a network of protein interactions may mask the loss of interaction that we have defined by two-hybrid analysis. A mutation in motif I of Ecm16 that is predicted to impair its ability to hydrolyze ATP led to accumulation of Bud23 in an ∼45S particle containing Ecm16. Thus, Bud23 enters the pre-40S pathway at the time of Ecm16 function.
PMCID: PMC4054285  PMID: 24710271
2.  The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits 
Molecular Biology of the Cell  2012;23(21):4313-4322.
This study shows that Trm112 interacts with and is required for the presence of 18S rRNA methyltransferase Bud23. Also shown is the involvement of Trm112 in 60S biogenesis, thus extending the known functions of Trm112 from tRNA and translation factor methylation to roles in biogenesis of both ribosomal subunits.
We previously identified Bud23 as the methyltransferase that methylates G1575 of rRNA in the P-site of the small (40S) ribosomal subunit. In this paper, we show that Bud23 requires the methyltransferase adaptor protein Trm112 for stability in vivo. Deletion of Trm112 results in a bud23Δ-like mutant phenotype. Thus Trm112 is required for efficient small-subunit biogenesis. Genetic analysis suggests the slow growth of a trm112Δ mutant is due primarily to the loss of Bud23. Surprisingly, suppression of the bud23Δ-dependent 40S defect revealed a large (60S) biogenesis defect in a trm112Δ mutant. Using sucrose gradient sedimentation analysis and coimmunoprecipitation, we show that Trm112 is also involved in 60S subunit biogenesis. The 60S defect may be dependent on Nop2 and Rcm1, two additional Trm112 interactors that we identify. Our work extends the known range of Trm112 function from modification of tRNAs and translation factors to both ribosomal subunits, showing that its effects span all aspects of the translation machinery. Although Trm112 is required for Bud23 stability, our results suggest that Trm112 is not maintained in a stable complex with Bud23. We suggest that Trm112 stabilizes its free methyltransferase partners not engaged with substrate and/or helps to deliver its methyltransferase partners to their substrates.
PMCID: PMC3484107  PMID: 22956767
3.  Las1 interacts with Grc3 polynucleotide kinase and is required for ribosome synthesis in Saccharomyces cerevisiae 
Nucleic Acids Research  2012;41(2):1135-1150.
Ribosome biogenesis is a multi-step process that couples cell growth with cell proliferation. Although several large-scale analysis of pre-ribosomal particles have identified numerous trans-acting factors involved in this process, many proteins involved in pre-rRNA processing and ribosomal subunit maturation have yet to be identified. Las1 was originally identified in Saccharomyces cerevisiae as a protein involved in cell morphogenesis. We previously demonstrated that the human homolog, Las1L, is required for efficient ITS2 rRNA processing and synthesis of the 60S ribosomal subunit. Here, we report that the functions of Las1 in ribosome biogenesis are also conserved in S. cerevisiae. Depletion of Las1 led to the accumulation of both the 27S and 7S rRNA intermediates and impaired the synthesis of the 60S subunit. We show that Las1 co-precipitates mainly with the 27S rRNA and associates with an Nsa1 and Rix1-containing pre-60S particle. We further identify Grc3 as a major Las1-interacting protein. We demonstrate that the kinase activity of Grc3 is required for efficient pre-rRNA processing and that depletion of Grc3 leads to rRNA processing defects similar to the ones observed in Las1-depleted cells. We propose that Las1 and Grc3 function together in a conserved mechanism to modulate rRNA processing and eukaryotic ribosome biogenesis.
PMCID: PMC3553937  PMID: 23175604
4.  Bud23 Methylates G1575 of 18S rRNA and Is Required for Efficient Nuclear Export of Pre-40S Subunits▿  
Molecular and Cellular Biology  2008;28(10):3151-3161.
BUD23 was identified from a bioinformatics analysis of Saccharomyces cerevisiae genes involved in ribosome biogenesis. Deletion of BUD23 leads to severely impaired growth, reduced levels of the small (40S) ribosomal subunit, and a block in processing 20S rRNA to 18S rRNA, a late step in 40S maturation. Bud23 belongs to the S-adenosylmethionine-dependent Rossmann-fold methyltransferase superfamily and is related to small-molecule methyltransferases. Nevertheless, we considered that Bud23 methylates rRNA. Methylation of G1575 is the only mapped modification for which the methylase has not been assigned. Here, we show that this modification is lost in bud23 mutants. The nuclear accumulation of the small-subunit reporters Rps2-green fluorescent protein (GFP) and Rps3-GFP, as well as the rRNA processing intermediate, the 5′ internal transcribed spacer 1, indicate that bud23 mutants are defective for small-subunit export. Mutations in Bud23 that inactivated its methyltransferase activity complemented a bud23Δ mutant. In addition, mutant ribosomes in which G1575 was changed to adenosine supported growth comparable to that of cells with wild-type ribosomes. Thus, Bud23 protein, but not its methyltransferase activity, is important for biogenesis and export of the 40S subunit in yeast.
PMCID: PMC2423152  PMID: 18332120

Results 1-4 (4)