PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Tracing phylogenomic events leading to diversity of Haemophilus influenzae and the emergence of Brazilian Purpuric Fever (BPF)-associated clones 
Genomics  2010;96(5):290-302.
Here we report the use of a multi-genome DNA microarray to elucidate the genomic events associated with the emergence of the clonal variants of H. influenzae biogroup aegyptius causing Brazilian Purpuric Fever (BPF), an important pediatric disease with a high mortality rate. We performed directed genome sequencing of strain HK1212 unique loci to construct a species DNA microarray. Comparative genome hybridization using this microarray enabled us to determine and compare gene complements, and infer reliable phylogenomic relationships among members of the species. The higher genomic variability observed in the genomes of BPF-related strains (clones) and their close relatives may be characterized by significant gene flux related to a subset of functional role categories. We found that the acquisition of a large number of virulence determinants featuring numerous cell membrane proteins coupled to the loss of genes involved in transport, central biosynthetic pathways and in particular, energy production pathways to be characteristics of the BPF genomic variants.
doi:10.1016/j.ygeno.2010.07.005
PMCID: PMC2967034  PMID: 20654709
Haemophilus; Brazilian Purpuric Fever; pathogen emergence; virulence; comparative genomics; microarray
2.  The APEX Quantitative Proteomics Tool: Generating protein quantitation estimates from LC-MS/MS proteomics results 
BMC Bioinformatics  2008;9:529.
Background
Mass spectrometry (MS) based label-free protein quantitation has mainly focused on analysis of ion peak heights and peptide spectral counts. Most analyses of tandem mass spectrometry (MS/MS) data begin with an enzymatic digestion of a complex protein mixture to generate smaller peptides that can be separated and identified by an MS/MS instrument. Peptide spectral counting techniques attempt to quantify protein abundance by counting the number of detected tryptic peptides and their corresponding MS spectra. However, spectral counting is confounded by the fact that peptide physicochemical properties severely affect MS detection resulting in each peptide having a different detection probability. Lu et al. (2007) described a modified spectral counting technique, Absolute Protein Expression (APEX), which improves on basic spectral counting methods by including a correction factor for each protein (called Oi value) that accounts for variable peptide detection by MS techniques. The technique uses machine learning classification to derive peptide detection probabilities that are used to predict the number of tryptic peptides expected to be detected for one molecule of a particular protein (Oi). This predicted spectral count is compared to the protein's observed MS total spectral count during APEX computation of protein abundances.
Results
The APEX Quantitative Proteomics Tool, introduced here, is a free open source Java application that supports the APEX protein quantitation technique. The APEX tool uses data from standard tandem mass spectrometry proteomics experiments and provides computational support for APEX protein abundance quantitation through a set of graphical user interfaces that partition thparameter controls for the various processing tasks. The tool also provides a Z-score analysis for identification of significant differential protein expression, a utility to assess APEX classifier performance via cross validation, and a utility to merge multiple APEX results into a standardized format in preparation for further statistical analysis.
Conclusion
The APEX Quantitative Proteomics Tool provides a simple means to quickly derive hundreds to thousands of protein abundance values from standard liquid chromatography-tandem mass spectrometry proteomics datasets. The APEX tool provides a straightforward intuitive interface design overlaying a highly customizable computational workflow to produce protein abundance values from LC-MS/MS datasets.
doi:10.1186/1471-2105-9-529
PMCID: PMC2639435  PMID: 19068132
3.  Within the fold: assessing differential expression measures and reproducibility in microarray assays 
Genome Biology  2002;3(11):research0062.1-research0062.12.
Fold-change' cutoffs have been widely used in microarray assays to identify genes that are differentially expressed. More accurate measures are required to identify high-confidence sets of genes with biologically meaningful changes in transcription. A general procedure for analyzing cDNA microarray data is proposed and validated. It is shown that pooled reference samples should be based not only on the expression of individual genes in each cell line but also on the expression levels of genes within cell lines.
Background
'Fold-change' cutoffs have been widely used in microarray assays to identify genes that are differentially expressed between query and reference samples. More accurate measures of differential expression and effective data-normalization strategies are required to identify high-confidence sets of genes with biologically meaningful changes in transcription. Further, the analysis of a large number of expression profiles is facilitated by a common reference sample, the construction of which must be carefully addressed.
Results
We carried out a series of 'self-self' hybridizations in which aliquots of the same RNA sample were labeled separately with Cy3 and Cy5 fluorescent dyes and co-hybridized to the same microarray. From this, we can analyze the intensity-dependent behavior of microarray data, define a statistically significant measure of differential expression that exploits the structure of the fluorescent signals, and measure the inherent reproducibility of the technique. We also devised a simple procedure for identifying and eliminating low-quality data for replicates within and between slides. We examine the properties required of a universal reference RNA sample and show how pooling a small number of samples with a diverse representation of expressed genes can outperform more complex mixtures as a reference sample.
Conclusion
Analysis of cell-line samples can identify systematic structure in measured gene-expression levels. A general procedure for analyzing cDNA microarray data is proposed and validated. We show that pooled reference samples should be based not only on the expression of individual genes in each cell line but also on the expression levels of genes within cell lines.
PMCID: PMC133446  PMID: 12429061

Results 1-3 (3)