PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Mining gene functional networks to improve mass-spectrometry-based protein identification 
Bioinformatics  2009;25(22):2955-2961.
Motivation: High-throughput protein identification experiments based on tandem mass spectrometry (MS/MS) often suffer from low sensitivity and low-confidence protein identifications. In a typical shotgun proteomics experiment, it is assumed that all proteins are equally likely to be present. However, there is often other evidence to suggest that a protein is present and confidence in individual protein identification can be updated accordingly.
Results: We develop a method that analyzes MS/MS experiments in the larger context of the biological processes active in a cell. Our method, MSNet, improves protein identification in shotgun proteomics experiments by considering information on functional associations from a gene functional network. MSNet substantially increases the number of proteins identified in the sample at a given error rate. We identify 8–29% more proteins than the original MS experiment when applied to yeast grown in different experimental conditions analyzed on different MS/MS instruments, and 37% more proteins in a human sample. We validate up to 94% of our identifications in yeast by presence in ground-truth reference sets.
Availability and Implementation: Software and datasets are available at http://aug.csres.utexas.edu/msnet
Contact: miranker@cs.utexas.edu, marcotte@icmb.utexas.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btp461
PMCID: PMC2773251  PMID: 19633097
2.  Integrating shotgun proteomics and mRNA expression data to improve protein identification 
Bioinformatics  2009;25(11):1397-1403.
Motivation: Tandem mass spectrometry (MS/MS) offers fast and reliable characterization of complex protein mixtures, but suffers from low sensitivity in protein identification. In a typical shotgun proteomics experiment, it is assumed that all proteins are equally likely to be present. However, there is often other information available, e.g. the probability of a protein's presence is likely to correlate with its mRNA concentration.
Results: We develop a Bayesian score that estimates the posterior probability of a protein's presence in the sample given its identification in an MS/MS experiment and its mRNA concentration measured under similar experimental conditions. Our method, MSpresso, substantially increases the number of proteins identified in an MS/MS experiment at the same error rate, e.g. in yeast, MSpresso increases the number of proteins identified by ∼40%. We apply MSpresso to data from different MS/MS instruments, experimental conditions and organisms (Escherichia coli, human), and predict 19–63% more proteins across the different datasets. MSpresso demonstrates that incorporating prior knowledge of protein presence into shotgun proteomics experiments can substantially improve protein identification scores.
Availability and Implementation: Software is available upon request from the authors. Mass spectrometry datasets and supplementary information are available from http://www.marcottelab.org/MSpresso/.
Contact: marcotte@icmb.utexas.edu; miranker@cs.utexas.edu
Supplementary Information: Supplementary data website: http://www.marcottelab.org/MSpresso/.
doi:10.1093/bioinformatics/btp168
PMCID: PMC2682515  PMID: 19318424

Results 1-2 (2)