Search tips
Search criteria

Results 1-25 (49)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Functional expression of dental plaque microbiota 
Dental caries remains a significant public health problem and is considered pandemic worldwide. The prediction of dental caries based on profiling of microbial species involved in disease and equally important, the identification of species conferring dental health has proven more difficult than anticipated due to high interpersonal and geographical variability of dental plaque microbiota. We have used RNA-Seq to perform global gene expression analysis of dental plaque microbiota derived from 19 twin pairs that were either concordant (caries-active or caries-free) or discordant for dental caries. The transcription profiling allowed us to define a functional core microbiota consisting of nearly 60 species. Similarities in gene expression patterns allowed a preliminary assessment of the relative contribution of human genetics, environmental factors and caries phenotype on the microbiota's transcriptome. Correlation analysis of transcription allowed the identification of numerous functional networks, suggesting that inter-personal environmental variables may co-select for groups of genera and species. Analysis of functional role categories allowed the identification of dominant functions expressed by dental plaque biofilm communities, that highlight the biochemical priorities of dental plaque microbes to metabolize diverse sugars and cope with the acid and oxidative stress resulting from sugar fermentation. The wealth of data generated by deep sequencing of expressed transcripts enables a greatly expanded perspective concerning the functional expression of dental plaque microbiota.
PMCID: PMC4132376  PMID: 25177549
caries; oral microbiota; dental plaque; biofilm; transcriptome
2.  Dental caries pathogenicity: a genomic and metagenomic perspective 
International dental journal  2011;61(0 1):11-22.
In this review we address the subject of dental caries pathogenicity from a genomic and metagenomic perspective. The application of genomic technologies is certain to yield novel insights into the relationship between the bacterial flora, dental health and disease. Three primary attributes of bacterial species are thought to have direct impact on caries development, these include: adherence on tooth surfaces (biofilm formation), acid production and acid tolerance. Attempts to define the specific aetiological agents of dental caries have proven to be elusive, supporting the notion that caries aetiology is perhaps complex and multi-faceted. The recently introduced Human Microbiome Project (HMP) that endeavors to characterise the micro-organisms living in and on the human body is likely to shed new light on these questions and improve our understanding of polymicrobial disease, microbial ecology in the oral cavity and provide new avenues for therapeutic and molecular diagnostics developments.
PMCID: PMC3699854  PMID: 21726221
Caries; biofilm; bacterial species; genomic; metagenomic; Human Microbiome Project
3.  Investigating the Genome Diversity of B. cereus and Evolutionary Aspects of B. anthracis Emergence 
Genomics  2011;98(1):26-39.
Here we report the use of a multi-genome DNA microarray to investigate the genome diversity of Bacillus cereus group members and elucidate the events associated with the emergence of B. anthracis the causative agent of anthrax–a lethal zoonotic disease. We initially performed directed genome sequencing of seven diverse B. cereus strains to identify novel sequences encoded in those genomes. The novel genes identified, combined with those publicly available, allowed the design of a “species” DNA microarray. Comparative genomic hybridization analyses of 41 strains indicates that substantial heterogeneity exists with respect to the genes comprising functional role categories. While the acquisition of the plasmid-encoded pathogenicity island (pXO1) and capsule genes (pXO2) represent a crucial landmark dictating the emergence of B. anthracis, the evolution of this species and its close relatives was associated with an overall a shift in the fraction of genes devoted to energy metabolism, cellular processes, transport, as well as virulence.
PMCID: PMC3129444  PMID: 21447378
4.  Tracing phylogenomic events leading to diversity of Haemophilus influenzae and the emergence of Brazilian Purpuric Fever (BPF)-associated clones 
Genomics  2010;96(5):290-302.
Here we report the use of a multi-genome DNA microarray to elucidate the genomic events associated with the emergence of the clonal variants of H. influenzae biogroup aegyptius causing Brazilian Purpuric Fever (BPF), an important pediatric disease with a high mortality rate. We performed directed genome sequencing of strain HK1212 unique loci to construct a species DNA microarray. Comparative genome hybridization using this microarray enabled us to determine and compare gene complements, and infer reliable phylogenomic relationships among members of the species. The higher genomic variability observed in the genomes of BPF-related strains (clones) and their close relatives may be characterized by significant gene flux related to a subset of functional role categories. We found that the acquisition of a large number of virulence determinants featuring numerous cell membrane proteins coupled to the loss of genes involved in transport, central biosynthetic pathways and in particular, energy production pathways to be characteristics of the BPF genomic variants.
PMCID: PMC2967034  PMID: 20654709
Haemophilus; Brazilian Purpuric Fever; pathogen emergence; virulence; comparative genomics; microarray
5.  Salmonella Modulates Metabolism during Growth under Conditions that Induce Expression of Virulence Genes 
Molecular bioSystems  2013;9(6):1522-1534.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes to virulence in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Furthermore, analyses of omics data in the context of the metabolic model indicated rewiring of the metabolic network to support pathways associated with virulence. For example, cellular concentrations of polyamines were perturbed, as well as the predicted capacity for secretion and uptake.
PMCID: PMC3665296  PMID: 23559334
6.  A mutli-omic systems approach to elucidating Yersinia virulence mechanisms 
Molecular bioSystems  2012;9(1):44-54.
The underlying mechanisms that lead to dramatic differences between closely related pathogens are not always readily apparent. For example, the genomes of Yersinia pestis (YP) the causative agent of plague with a high mortality rate and Yersinia pseudotuberculosis (YPT) an enteric pathogen with a modest mortality rate are highly similar with some species specific differences; however the molecular causes of their distinct clinical outcomes remain poorly understood. In this study, a temporal multi-omic analysis of YP and YPT at physiologically relevant temperatures was performed to gain insights into how an acute and highly lethal bacterial pathogen, YP, differs from its less virulent progenitor, YPT. This analysis revealed higher gene and protein expression levels of conserved major virulence factors in YP relative to YPT, including the Yop virulon and the pH6 antigen. This suggests that adaptation in the regulatory architecture, in addition to the presence of unique genetic material, may contribute to the increased pathogenenicity of YP relative to YPT. Additionally, global transcriptome and proteome responses of YP and YPT revealed conserved post-transcriptional control of metabolism and the translational machinery including the modulation of glutamate levels in Yersiniae. Finally, the omics data was coupled with a computational network analysis, allowing an efficient prediction of novel Yersinia virulence factors based on gene and protein expression patterns.
PMCID: PMC3518462  PMID: 23147219
7.  LUD, a new protein domain associated with lactate utilization 
BMC Bioinformatics  2013;14:341.
A novel highly conserved protein domain, DUF162 [Pfam: PF02589], can be mapped to two proteins: LutB and LutC. Both proteins are encoded by a highly conserved LutABC operon, which has been implicated in lactate utilization in bacteria. Based on our analysis of its sequence, structure, and recent experimental evidence reported by other groups, we hereby redefine DUF162 as the LUD domain family.
JCSG solved the first crystal structure [PDB:2G40] from the LUD domain family: LutC protein, encoded by ORF DR_1909, of Deinococcus radiodurans. LutC shares features with domains in the functionally diverse ISOCOT superfamily. We have observed that the LUD domain has an increased abundance in the human gut microbiome.
We propose a model for the substrate and cofactor binding and regulation in LUD domain. The significance of LUD-containing proteins in the human gut microbiome, and the implication of lactate metabolism in the radiation-resistance of Deinococcus radiodurans are discussed.
PMCID: PMC3924224  PMID: 24274019
LUD; DUF162; LutB; LutC; Domain of unknown function; Deinococcus radiodurans
8.  Mutational Activation of the AmgRS Two-Component System in Aminoglycoside-Resistant Pseudomonas aeruginosa 
The amgRS operon encodes a presumed membrane stress-responsive two-component system linked to intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Genome sequencing of a lab isolate showing modest pan-aminoglycoside resistance, strain K2979, revealed a number of mutations, including a substitution in amgS that produced an R182C change in the AmgS sensor kinase product of this gene. Introduction of this mutation into an otherwise wild-type strain recapitulated the resistance phenotype, while correcting the mutation in the resistant mutant abrogated the resistant phenotype, confirming that the amgS mutation is responsible for the aminoglycoside resistance of strain K2979. The amgSR182 mutation promoted an AmgR-dependent, 2- to 3-fold increase in expression of the AmgRS target genes htpX and PA5528, mirroring the impact of aminoglycoside exposure of wild-type cells on htpX and PA5528 expression. This suggests that amgSR182 is a gain-of-function mutation that activates AmgS and the AmgRS two-component system in promoting modest resistance to aminoglycosides. Screening of several pan-aminoglycoside-resistant clinical isolates of P. aeruginosa revealed three that showed elevated htpX and PA5528 expression and harbored single amino acid-altering mutations in amgS (V121G or D106N) and no mutations in amgR. Introduction of the amgSV121G mutation into wild-type P. aeruginosa generated a resistance phenotype reminiscent of the amgSR182 mutant and produced a 2- to 3-fold increase in htpX and PA5528 expression, confirming that it, too, is a gain-of-function aminoglycoside resistance-promoting mutation. These results highlight the contribution of amgS mutations and activation of the AmgRS two-component system to acquired aminoglycoside resistance in lab and clinical isolates of P. aeruginosa.
PMCID: PMC3632935  PMID: 23459488
9.  The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus 
Molecular microbiology  2012;86(2):331-348.
In bacterial two-component regulatory systems (TCSs), dephosphorylation of phosphorylated response regulators is essential for resetting the activated systems to the pre-activation state. However, in the SaeRS TCS, a major virulence TCS of Staphylococcus aureus, the mechanism for dephosphorylation of the response regulator SaeR has not been identified. Here we report that two auxiliary proteins from the sae operon, SaeP and SaeQ, form a protein complex with the sensor kinase SaeS and activate the sensor kinase’s phosphatase activity. Efficient activation of the phosphatase activity required the presence of both SaeP and SaeQ. When SaeP and SaeQ were ectopically expressed, the expression of coagulase, a sae target with low affinity for phosphorylated SaeR, was greatly reduced, while the expression of alpha-hemolysin, a sae target with high affinity for phosphorylated SaeR, was not, demonstrating a differential effect of SaePQ on sae target gene expression. When expression of SaePQ was abolished, most sae target genes were induced at an elevated level. Since the expression of SaeP and SaeQ is induced by the SaeRS TCS, these results suggest that the SaeRS TCS returns to the pre-activation state by a negative feedback mechanism.
PMCID: PMC3468659  PMID: 22882143
Bacteria; Membrane proteins; Lipoproteins; Negative-feedback; Phosphatase
10.  The complexity of simplicity 
Genome Biology  2001;2(2):comment2002.1-comment2002.8.
What is the minimum number of genes or functions necessary to support cellular life? The concept of a 'minimal genome' has become popular, but is it a useful concept, and if so, what might a minimal genome encode? We argue that the concept may be useful, even though the goal of defining a general minimal genome may never be attained.
PMCID: PMC138898  PMID: 11182883
11.  A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection 
PLoS ONE  2013;8(6):e67155.
The potential for commensal microorganisms indigenous to a host (the ‘microbiome’ or ‘microbiota’) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics “systems” approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium’s lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.
PMCID: PMC3694140  PMID: 23840608
12.  Reduced Expression of the rplU-rpmA Ribosomal Protein Operon in mexXY-Expressing Pan-Aminoglycoside-Resistant Mutants of Pseudomonas aeruginosa 
Antimicrobial Agents and Chemotherapy  2012;56(10):5171-5179.
Pan-aminoglycoside-resistant Pseudomonas aeruginosa mutants expressing the mexXY components of the aminoglycoside-accommodating MexXY-OprM multidrug efflux system but lacking mutations in the mexZ gene encoding a repressor of this efflux system and in the mexXY promoter have been reported (S. Fraud and K. Poole, Antimicrob. Agents Chemother. 55:1068–1074, 2011). Genome sequencing of one of these mutants, K2966, revealed the presence of a mutation within the predicted promoter region of the rplU-rpmA operon encoding ribosomal proteins L21 and L27, consistent with an observed 2-fold decrease in expression of this operon in the mutant relative to wild-type P. aeruginosa PAO1. Moreover, correction of the mutation restored rplU-rpmA expression and, significantly, reversed the elevated mexXY expression and pan-aminoglycoside resistance of the mutant. Reduced rplU-rpmA expression was also observed in a second mexXY-expressing pan-aminoglycoside-resistant mutant, K2968, which, however, lacked a mutation in the rplU-rpmA promoter region. Restoration of rplU-rpmA expression in the K2968 mutant following chromosomal integration of the rplU-rpmA operon derived from wild-type P. aeruginosa failed, however, to reverse the elevated mexXY expression and pan-aminoglycoside resistance of this mutant, although it did so for K2966, suggesting that the mutation impacting rplU-rpmA expression in K2968 also impacts other mexXY-related genes. Increased mexXY expression owing to reduced rplU-rpmA expression in K2966 and K2968 was dependent on PA5471, whose expression was also elevated in these mutants. Thus, mutational disruption of ribosome function, by limiting expression of ribosomal constituents, promotes recruitment of mexXY and does so via PA5471, reminiscent of mexXY induction by ribosome-disrupting antimicrobial agents. Interestingly, reduced rplU-rpmA expression was also observed in a mexXY-expressing pan-aminoglycoside-resistant clinical isolate, suggesting that ribosome-perturbing mutations have clinical relevance in the recruitment of the MexXY-OprM aminoglycoside resistance determinant.
PMCID: PMC3457373  PMID: 22825121
13.  The Dental Plaque Microbiome in Health and Disease 
PLoS ONE  2013;8(3):e58487.
Dental decay is one of the most prevalent chronic diseases worldwide. A variety of factors, including microbial, genetic, immunological, behavioral and environmental, interact to contribute to dental caries onset and development. Previous studies focused on the microbial basis for dental caries have identified species associated with both dental health and disease. The purpose of the current study was to improve our knowledge of the microbial species involved in dental caries and health by performing a comprehensive 16S rDNA profiling of the dental plaque microbiome of both caries-free and caries-active subjects. Analysis of over 50,000 nearly full-length 16S rDNA clones allowed the identification of 1,372 operational taxonomic units (OTUs) in the dental plaque microbiome. Approximately half of the OTUs were common to both caries-free and caries-active microbiomes and present at similar abundance. The majority of differences in OTU’s reflected very low abundance phylotypes. This survey allowed us to define the population structure of the dental plaque microbiome and to identify the microbial signatures associated with dental health and disease. The deep profiling of dental plaque allowed the identification of 87 phylotypes that are over-represented in either caries-free or caries-active subjects. Among these signatures, those associated with dental health outnumbered those associated with dental caries by nearly two-fold. A comparison of this data to other published studies indicate significant heterogeneity in study outcomes and suggest that novel approaches may be required to further define the signatures of dental caries onset and progression.
PMCID: PMC3592792  PMID: 23520516
14.  AirSR, a [2Fe-2S] Cluster-Containing Two-Component System, Mediates Global Oxygen Sensing and Redox Signaling in Staphylococcus aureus 
Oxygen sensing and redox signaling significantly affect bacterial physiology and host-pathogen interaction. Here we show that a Staphylococcus aureus two-component system, AirSR (anaerobic iron-sulfur cluster-containing redox sensor regulator, formerly YhcSR), responds to oxidation signals (O2, H2O2, NO, etc) by using a redox-active [2Fe-2S] cluster in the sensor kinase AirS. Mutagenesis studies demonstrate that the [2Fe-2S] cluster is essential for the kinase activity of AirS. We have also discovered that a homolog of IscS (SA1450) in S. aureus is active as a cysteine desulfurase, which enables the in vitro reconstitution of the [2Fe-2S] cluster in AirS. Phosphorylation assays show that the oxidized AirS with a [2Fe-2S]2+ cluster is the fully active form of the kinase but not the apo-AirS nor the reduced AirS possessing a [2Fe-2S]+ cluster. Over-oxidation by prolonged exposure to O2 or contact with H2O2 or NO led to inactivation of AirS. Transcriptome analysis revealed that mutation of airR impacts the expression of ~355 genes under anaerobic conditions. Moreover, the mutant strain displayed increased resistance toward H2O2, vancomycin, norfloxacin, and ciprofloxacin under anaerobic conditions. Together, our results show that S. aureus AirSR is a redox-dependent global regulatory system that plays important roles in gene regulation using a redox active Fe-S cluster under O2-limited conditions.
PMCID: PMC3257388  PMID: 22122613
15.  Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria 
The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS.
Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpSSA), Vibrio cholerae (AcpSVC) and Bacillus anthracis (AcpSBA) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpSBA is emphasized because of the two 3′,5′-adenosine diphosphate (3′,5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′,5′-ADP is bound as the 3′,5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′,5′-ADP–AcpS binary complexes. The position of the second 3′,5′-ADP has never been described before. It is in close proximity to the first 3′,5′-­ADP and the ACP-binding site. The coordination of two ADPs in AcpSBA may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.
PMCID: PMC3447402  PMID: 22993090
acyl-carrier-protein synthase; acyl carrier protein; type II fatty-acid synthesis; inhibition; 3′,5′-adenosine diphosphate; coenzyme A
17.  Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation 
Genome-scale metabolic network reconstruction and analysis of the murine leukemic macrophage cell line RAW 264.7 reveal a complementary relationship between how known metabolic immunomodulators are biochemically processed and their role in macrophage activation.
The RAW 264.7 metabolic model was constructed based on transcriptomic and proteomic data, and validated for its quantitative accuracy in the prediction of growth rate, ATP, and nitric oxide production.Metabolic network-based analyses identified well-established critical metabolite effectors and intracellular pathways that impact activation or suppression of M1- and M2-metabolic activation phenotypes.Three levels of high-throughput data (transcriptomic, proteomic, and metabolomic) were analyzed in the context of the model-based predictions to elucidate underlying metabolic mechanisms of macrophage activation.Results suggest a potential contending link between de-novo nucleotide synthesis and macrophage activation phenotypes at a glutamine junction.
Macrophages are central players in immune response, manifesting divergent phenotypes to control inflammation and innate immunity through release of cytokines and other signaling factors. Recently, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features that are critical for macrophage activation. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of activation. Metabolites well-known to be associated with immunoactivation (glucose and arginine) and immunosuppression (tryptophan and vitamin D3) were among the most critical effectors. Intracellular metabolic mechanisms were assessed, identifying a suppressive role for de-novo nucleotide synthesis. Finally, underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying connections between activation and metabolic effectors.
PMCID: PMC3397418  PMID: 22735334
constraint-based modeling; immunometabolism; metabolic network reconstruction; RAW 264.7
18.  Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus Fumigatus conidial proteome 
Proteome Science  2012;10:30.
The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled conidia (asexual spores) in the host is critical for the initiation of infection, but little is known about the underlying mechanisms of this process.
To gain insights into early germination events and facilitate the identification of potential stage-specific biomarkers and vaccine candidates, we have used quantitative shotgun proteomics to elucidate patterns of protein abundance changes during early fungal development. Four different stages were examined: dormant conidia, isotropically expanding conidia, hyphae in which germ tube emergence has just begun, and pre-septation hyphae. To enrich for glycan-linked cell wall proteins we used an alkaline cell extraction method. Shotgun proteomic resulted in the identification of 375 unique gene products with high confidence, with no evidence for enrichment of cell wall-immobilized and secreted proteins. The most interesting discovery was the identification of 52 proteins enriched in dormant conidia including 28 proteins that have never been detected in the A. fumigatus conidial proteome such as signaling protein Pil1, chaperones BipA and calnexin, and transcription factor HapB. Additionally we found many small, Aspergillus specific proteins of unknown function including 17 hypothetical proteins. Thus, the most abundant protein, Grg1 (AFUA_5G14210), was also one of the smallest proteins detected in this study (M.W. 7,367). Among previously characterized proteins were melanin pigment and pseurotin A biosynthesis enzymes, histones H3 and H4.1, and other proteins involved in conidiation and response to oxidative or hypoxic stress. In contrast, expanding conidia, hyphae with early germ tubes, and pre-septation hyphae samples were enriched for proteins responsible for housekeeping functions, particularly translation, respiratory metabolism, amino acid and carbohydrate biosynthesis, and the tricarboxylic acid cycle.
The observed temporal expression patterns suggest that the A. fumigatus conidia are dominated by small, lineage-specific proteins. Some of them may play key roles in host-pathogen interactions, signal transduction during conidial germination, or survival in hostile environments.
PMCID: PMC3424117  PMID: 22545825
Mass spectrometry; LC-MS/MS; APEX; Shotgun proteomics; Aspergillus fumigatus; Germination; Spore; Conidia; Fungi; Hypothetical proteins
19.  A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding† 
Biochemistry  2011;50(12):2357-2363.
Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD which address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of loop involvement in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, loop closure necessitates a conformational change of a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria makes the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.
PMCID: PMC3062685  PMID: 21291284
20.  Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae 
PLoS ONE  2012;7(3):e33903.
Genome sequencing continues to be a rapidly evolving technology, yet most downstream aspects of genome annotation pipelines remain relatively stable or are even being abandoned. The annotation process is now performed almost exclusively in an automated fashion to balance the large number of sequences generated. One possible way of reducing errors inherent to automated computational annotations is to apply data from omics measurements (i.e. transcriptional and proteomic) to the un-annotated genome with a proteogenomic-based approach. Here, the concept of annotation refinement has been extended to include a comparative assessment of genomes across closely related species. Transcriptomic and proteomic data derived from highly similar pathogenic Yersiniae (Y. pestis CO92, Y. pestis Pestoides F, and Y. pseudotuberculosis PB1/+) was used to demonstrate a comprehensive comparative omic-based annotation methodology. Peptide and oligo measurements experimentally validated the expression of nearly 40% of each strain's predicted proteome and revealed the identification of 28 novel and 68 incorrect (i.e., observed frameshifts, extended start sites, and translated pseudogenes) protein-coding sequences within the three current genome annotations. Gene loss is presumed to play a major role in Y. pestis acquiring its niche as a virulent pathogen, thus the discovery of many translated pseudogenes, including the insertion-ablated argD, underscores a need for functional analyses to investigate hypotheses related to divergence. Refinements included the discovery of a seemingly essential ribosomal protein, several virulence-associated factors, a transcriptional regulator, and many hypothetical proteins that were missed during annotation.
PMCID: PMC3313959  PMID: 22479471
21.  TLR signaling is required for virulence of an intracellular pathogen 
Cell  2011;144(5):675-688.
Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the Nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection.
PMCID: PMC3063366  PMID: 21376231
22.  A Novel Copper-Responsive Regulon in Mycobacterium tuberculosis 
Molecular microbiology  2010;79(1):133-148.
In this work we describe the identification of a copper-inducible regulon in Mycobacterium tuberculosis (Mtb). Among the regulated genes was Rv0190/MT0200, a paralogue of the copper metalloregulatory repressor CsoR. The five-locus regulon, which includes a gene that encodes the copper-protective metallothionein MymT, was highly induced in wild type Mtb treated with copper, and highly expressed in an Rv0190/MT0200 mutant. Importantly, the Rv0190/MT0200 mutant was hyper-resistant to copper. The promoters of all five loci share a palindromic motif that was recognized by the gene product of Rv0190/MT0200. For this reason we named Rv0190/MT0200 RicR for regulated in copper repressor. Intriguingly, several of the RicR-regulated genes, including MymT, are unique to pathogenic Mycobacteria. The identification of a copper-responsive regulon specific to virulent mycobacterial species suggests copper homeostasis must be maintained during an infection. Alternatively, copper may provide a cue for the expression of genes unrelated to metal homeostasis, but nonetheless necessary for survival in a host.
PMCID: PMC3052634  PMID: 21166899
23.  Characterizing the Escherichia coli O157:H7 Proteome Including Protein Associations with Higher Order Assemblies 
PLoS ONE  2011;6(11):e26554.
The recent outbreak of severe infections with Shiga toxin (Stx) producing Escherichia coli (STEC) serotype O104:H4 highlights the need to understand horizontal gene transfer among E. coli strains, identify novel virulence factors and elucidate their pathogenesis. Quantitative shotgun proteomics can contribute to such objectives, allowing insights into the part of the genome translated into proteins and the connectivity of biochemical pathways and higher order assemblies of proteins at the subcellular level.
Methodology/Principal Findings
We examined protein profiles in cell lysate fractions of STEC strain 86-24 (serotype O157:H7), following growth in cell culture or bacterial isolation from intestines of infected piglets, in the context of functionally and structurally characterized biochemical pathways of E. coli. Protein solubilization in the presence of Triton X-100, EDTA and high salt was followed by size exclusion chromatography into the approximate Mr ranges greater than 280 kDa, 280-80 kDa and 80-10 kDa. Peptide mixtures resulting from these and the insoluble fraction were analyzed by quantitative 2D-LC-nESI-MS/MS. Of the 2521 proteins identified at a 1% false discovery rate, representing 47% of all predicted E. coli O157:H7 gene products, the majority of integral membrane proteins were enriched in the high Mr fraction. Hundreds of proteins were enriched in a Mr range higher than that predicted for a monomer supporting their participation in protein complexes. The insoluble STEC fraction revealed enrichment of aggregation-prone proteins, including many that are part of large structure/function entities such as the ribosome, cytoskeleton and O-antigen biosynthesis cluster.
Nearly all E. coli O157:H7 proteins encoded by prophage regions were expressed at low abundance levels or not detected. Comparative quantitative analyses of proteins from distinct cell lysate fractions allowed us to associate uncharacterized proteins with membrane attachment, potential participation in stable protein complexes, and susceptibility to aggregation as part of larger structural assemblies.
PMCID: PMC3210124  PMID: 22087229
24.  Comparative Genome Sequencing of an Isogenic Pair of USA800 Clinical Methicillin-Resistant Staphylococcus aureus Isolates Obtained before and after Daptomycin Treatment Failure▿† 
We describe here a clinical daptomycin treatment failure in a patient with recurrent methicillin-resistant Staphylococcus aureus (MRSA) bacteremia in whom daptomycin was administered after a failed empirical treatment course with vancomycin and piperacillin-tazobactam. We had the opportunity to compare the genome sequences of an isogenic pair of daptomycin-susceptible and -resistant MRSA isolates obtained before and after initiation of daptomycin therapy, respectively. The genotype of both isolates was USA800, ST5, SCCmec type IV, agr type II. There was no increase in cell wall thickness in the daptomycin-resistant strain despite having decreased susceptibility to both vancomycin and daptomycin. By comparing the genome sequences by pyrosequencing, we identified a polymorphism (S337L) in the tenth transmembrane segment of the multiple peptide resistance factor, MprF, encoding lysyl phosphatidylglycerol transferase. This enzyme has been shown previously to promote repulsion of daptomycin at the cell surface by addition of positively charged lysine to phosphatidylglycerol. Also, the hlb open reading frame (ORF) encoding the β-toxin was interrupted by a prophage in the daptomycin-susceptible strain; this phage was missing in the daptomycin-resistant isolate and the hlb ORF was restored. Loss of the phage in the resistant isolate also resulted in loss of the virulence factor genes clpP, scn, and sak. This is the first study to use pyrosequencing to compare the genomes of a daptomycin-susceptible/resistant MRSA isolate pair obtained during failed daptomycin therapy in humans.
PMCID: PMC3088213  PMID: 21343446
25.  Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium 
BMC Genomics  2011;12:433.
Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. However, determining protein-coding genes for most new genomes is almost completely performed by inference using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function.
We experimentally annotated the bacterial pathogen Salmonella Typhimurium 14028, using "shotgun" proteomics to accurately uncover the translational landscape and post-translational features. The data provide protein-level experimental validation for approximately half of the predicted protein-coding genes in Salmonella and suggest revisions to several genes that appear to have incorrectly assigned translational start sites, including a potential novel alternate start codon. Additionally, we uncovered 12 non-annotated genes missed by gene prediction programs, as well as evidence suggesting a role for one of these novel ORFs in Salmonella pathogenesis. We also characterized post-translational features in the Salmonella genome, including chemical modifications and proteolytic cleavages. We find that bacteria have a much larger and more complex repertoire of chemical modifications than previously thought including several novel modifications. Our in vivo proteolysis data identified more than 130 signal peptide and N-terminal methionine cleavage events critical for protein function.
This work highlights several ways in which application of proteomics data can improve the quality of genome annotations to facilitate novel biological insights and provides a comprehensive proteome map of Salmonella as a resource for systems analysis.
PMCID: PMC3174948  PMID: 21867535
gene annotation; proteomics; post-translational modifications

Results 1-25 (49)