PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Common skeletal features in rare diseases 
Rare Diseases  2013;1:e27109.
Congenital skeletal anomalies are rare disorders, with a subset affecting both the cranial and appendicular skeleton. Two categories, craniosynostosis syndromes and chondrodysplasias, frequently result from aberrant regulation of the fibroblast growth factor (FGF) signaling pathway. Our recent work has implicated FGF signaling in a third category: ciliopathic skeletal dysplasias. In this work, we have used mouse mutants in two ciliopathy genes, Fuzzy (Fuz) and orofacial digital syndrome-1 (Ofd-1), to demonstrate increase in Fgf8 gene expression during critical stages of embryogenesis. While the mechanisms underlying FGF dysregulation differ in the different syndromes, our data raise the possibility that convergence on FGF signal transduction may underlie a wide range of skeletal anomalies. Here, we provide additional evidence of the skeletal phenotypes from the Fuz mouse model and highlight similarities between human ciliopathies and FGF-related syndromes.
doi:10.4161/rdis.27109
PMCID: PMC3932950  PMID: 25003013
ciliopathy; FGF; skeletal dysplasia
2.  Hedgehog activity controls opening of the primary mouth 
Developmental biology  2014;396(1):1-7.
To feed or breathe, the oral opening must connect with the gut. The foregut and oral tissues converge at the primary mouth, forming the buccopharyngeal membrane (BPM), a bilayer epithelium. Failure to form the opening between gut and mouth has significant ramifications, and many craniofacial disorders have been associated with defects in this process. Oral perforation is characterized by dissolution of the BPM, but little is known about this process. In humans, failure to form a continuous mouth opening is associated with mutations in Hedgehog (Hh) pathway members; however, the role of Hh in primary mouth development is untested. Here, we show, using Xenopus, that Hh signaling is necessary and sufficient to initiate mouth formation, and that Hh activation is required in a dose-dependent fashion to determine the size of the mouth. This activity lies upstream of the previously demonstrated role for Wnt signal inhibition in oral perforation. We then turn to mouse mutants to establish that SHH and Gli3 are indeed necessary for mammalian mouth development. Our data suggest that Hh-mediated BPM persistence may underlie oral defects in human craniofacial syndromes.
doi:10.1016/j.ydbio.2014.09.029
PMCID: PMC4252736  PMID: 25300580
Hedgehog; Wnt; Primary mouth; Xenopus; Mouse; Buccopharyngeal membrane; Stomodeum; Fibronectin
3.  Dazap2 is required for FGF-mediated posterior neural patterning, independent of Wnt and Cdx function 
Developmental biology  2009;333(1):26-36.
The organization of the embryonic neural plate requires coordination of multiple signal transduction pathways, including fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), and WNTs. Many studies have suggested that a critical component of this process is the patterning of posterior neural tissues by an FGF-caudal signaling cascade. Here, we have identified a novel player, Dazap2, and show that it is required in vivo for posterior neural fate. Loss of Dazap2 in embryos resulted in diminished expression of hoxb9 with a concurrent increase in the anterior marker otx2. Furthermore, we found that Dazap2 is required for FGF dependent posterior patterning; surprisingly, this is independent of Cdx activity. Furthermore, in contrast to FGF activity, Dazap2 induction of hoxb9 is not blocked by loss of canonical Wnt signaling. Functionally, we found that increasing Dazap2 levels alters neural patterning and induces posterior neural markers. This activity overcomes the anteriorizing effects of noggin, and is downstream of FGF receptor activation. Our results strongly suggest that Dazap2 is a novel and essential branch of FGF-induced neural patterning.
doi:10.1016/j.ydbio.2009.06.019
PMCID: PMC3769164  PMID: 19555680
Dazap2; Prtb; Posterior neural patterning; FGF; Cdx4; Noggin; Wnt Short title: Dazap2 in FGF-mediated neural patterning
4.  Cranial neural crest cells form corridors prefiguring sensory neuroblast migration 
Development (Cambridge, England)  2013;140(17):3595-3600.
The majority of cranial sensory neurons originate in placodes in the surface ectoderm, migrating to form ganglia that connect to the central nervous system (CNS). Interactions between inward-migrating sensory neuroblasts and emigrant cranial neural crest cells (NCCs) play a role in coordinating this process, but how the relationship between these two cell populations is established is not clear. Here, we demonstrate that NCCs generate corridors delineating the path of migratory neuroblasts between the placode and CNS in both chick and mouse. In vitro analysis shows that NCCs are not essential for neuroblast migration, yet act as a superior substrate to mesoderm, suggesting provision of a corridor through a less-permissive mesodermal territory. Early organisation of NCC corridors occurs prior to sensory neurogenesis and can be recapitulated in vitro; however, NCC extension to the placode requires placodal neurogenesis, demonstrating reciprocal interactions. Together, our data indicate that NCC corridors impose physical organisation for precise ganglion formation and connection to the CNS, providing a local environment to enclose migrating neuroblasts and axonal processes as they migrate through a non-neural territory.
doi:10.1242/dev.091033
PMCID: PMC3742142  PMID: 23942515
Neural crest; Placode; Cranial sensory ganglia
5.  Fuz Mutant Mice Reveal Shared Mechanisms between Ciliopathies and FGF-Related Syndromes 
Developmental Cell  2013;25(6):623-635.
Summary
Ciliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for a common craniofacial anomaly and identify links between two classes of human disease: FGF-hyperactivation syndromes and ciliopathies.
Highlights
•A genetic model for high arched palate, commonly seen in human craniofacial syndromes•In ciliopathic mice, Fgf8 overexpression leads to cranial neural crest hyperplasia•Enlargement of the maxillary primordia underlies high arched palate in Fuz mutants•An etiological link between ciliopathies and FGF-hyperactivation syndromes
High arched palate is common to many human disorders, including ciliopathies and craniosynostosis syndromes. Tabler et al. develop and analyze a genetic model of high arched palate; they conclude that embryonic changes in neural crest and fibroblast growth factor signaling underlie this unusual phenotype.
doi:10.1016/j.devcel.2013.05.021
PMCID: PMC3697100  PMID: 23806618
6.  Novel Reporter Alleles of GSK-3α and GSK-3β 
PLoS ONE  2012;7(11):e50422.
Glycogen Synthase Kinase 3 (GSK-3) is a key player in development, physiology and disease. Because of this, GSK-3 inhibitors are increasingly being explored for a variety of applications. In addition most analyses focus on GSK-3β and overlook the closely related protein GSK-3α. Here, we describe novel GSK-3α and GSK-3β mouse alleles that allow us to visualise expression of their respective mRNAs by tracking β-galactosidase activity. We used these new lacZ alleles to compare expression in the palate and cranial sutures and found that there was indeed differential expression. Furthermore, both are loss of function alleles and can be used to generate homozygous mutant mice; in addition, excision of the lacZ cassette from GSK-3α creates a Cre-dependent tissue-specific knockout. As expected, GSK3α mutants were viable, while GSK3β mutants died after birth with a complete cleft palate. We also assessed the GSK-3α mutants for cranial and sternal phenotypes and found that they were essentially normal. Finally, we observed gestational lethality in compound GSK-3β−/−; GSK3α+/− mutants, suggesting that GSK-3 dosage is critical during embryonic development.
doi:10.1371/journal.pone.0050422
PMCID: PMC3503927  PMID: 23185619
7.  Electroporation of Craniofacial Mesenchyme  
Electroporation is an efficient method of delivering DNA and other charged macromolecules into tissues at precise time points and in precise locations. For example, electroporation has been used with great success to study neural and retinal development in Xenopus, chicken and mouse 1-10. However, it is important to note that in all of these studies, investigators were not targeting soft tissues. Because we are interested in craniofacial development, we adapted a method to target facial mesenchyme.
When we searched the literature, we found, to our surprise, very few reports of successful gene transfer into cartilaginous tissue. The majority of these studies were gene therapy studies, such as siRNA or protein delivery into chondrogenic cell lines, or, animal models of arthritis 11-13. In other systems, such as chicken or mouse, electroporation of facial mesenchyme has been challenging (personal communications, Dept of Craniofacial Development, KCL). We hypothesized that electroporation into procartilaginous and cartilaginous tissues in Xenopus might work better. In our studies, we show that gene transfer into the facial cartilages occurs efficiently at early stages (28), when the facial primordium is still comprised of soft tissue prior to cartilage differentiation.
Xenopus is a very accessible vertebrate system for analysis of craniofacial development. Craniofacial structures are more readily visible in Xenopus than in any other vertebrate model, primarily because Xenopus embryos are fertilized externally, allowing analyses of the earliest stages, and facilitating live imaging at single cell resolution, as well as reuse of the mothers 14. Among vertebrate models developing externally, Xenopus is more useful for craniofacial analysis than zebrafish, as Xenopus larvae are larger and easier to dissect, and the developing facial region is more accessible to imaging than the equivalent region in fish. In addition, Xenopus is evolutionarily closer to humans than zebrafish (˜100 million years closer) 15. Finally, at these stages, Xenopus tadpoles are transparent, and concurrent expression of fluorescent proteins or molecules will allow easy visualization of the developing cartilages. We anticipate that this approach will allow us to rapidly and efficiently test candidate molecules in an in vivo model system.
doi:10.3791/3381
PMCID: PMC3308610  PMID: 22143372
8.  Role of GSK-3β in the Osteogenic Differentiation of Palatal Mesenchyme 
PLoS ONE  2011;6(10):e25847.
Introduction
The function of Glycogen Synthase Kinases 3β (GSK-3β) has previously been shown to be necessary for normal secondary palate development. Using GSK-3ß null mouse embryos, we examine the potential coordinate roles of Wnt and Hedgehog signaling on palatal ossification.
Methods
Palates were harvested from GSK-3β, embryonic days 15.0–18.5 (e15.0–e18.5), and e15.5 Indian Hedgehog (Ihh) null embryos, and their wild-type littermates. The phenotype of GSK-3β null embryos was analyzed with skeletal whole mount and pentachrome stains. Spatiotemporal regulation of osteogenic gene expression, in addition to Wnt and Hedgehog signaling activity, were examined in vivo on GSK-3β and Ihh +/+ and −/− e15.5 embryos using in situ hybridization and immunohistochemistry. To corroborate these results, expression of the same molecular targets were assessed by qRT-PCR of e15.5 palates, or e13.5 palate cultures treated with both Wnt and Hedgehog agonists and anatagonists.
Results
GSK-3β null embryos displayed a 48 percent decrease (*p<0.05) in palatine bone formation compared to wild-type littermates. GSK-3β null embryos also exhibited decreased osteogenic gene expression that was associated with increased Wnt and decreased Hedgehog signaling. e13.5 palate culture studies demonstrated that Wnt signaling negatively regulates both osteogenic gene expression and Hedgehog signaling activity, while inhibition of Wnt signaling augments both osteogenic gene expression and Hedgehog signaling activity. In addition, no differences in Wnt signaling activity were noted in Ihh null embryos, suggesting that canonical Wnt may be upstream of Hedgehog in secondary palate development. Lastly, we found that GSK-3β −/− palate cultures were “rescued” with the Wnt inhibitor, Dkk-1.
Conclusions
Here, we identify a critical role for GSK-3β in palatogenesis through its direct regulation of canonical Wnt signaling. These findings shed light on critical developmental pathways involved in palatogenesis and may lead to novel molecular targets to prevent cleft palate formation.
doi:10.1371/journal.pone.0025847
PMCID: PMC3194817  PMID: 22022457
9.  The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis, and mouse embryonic development 
Nature cell biology  2009;11(10):1225-1232.
The planar cell polarity (PCP) signaling pathway is essential for embryonic development because it governs diverse cellular behaviors, and the “core PCP” proteins, such as Dishevelled and Frizzled, have been extensively characterized1–4. By contrast, the “PCP effector” proteins, such as Intu and Fuz, remain largely unstudied5, 6. These proteins are essential for PCP signaling, but they have never been investigated in a mammal and their cell biological activities remain entirely unknown. We report here that Fuz mutant mice display neural tube defects, skeletal dysmorphologies, and Hedgehog signaling defects stemming from disrupted ciliogenesis. Using bioinformatics and imaging of an in vivo mucociliary epithelium, we establish a central role for Fuz in membrane trafficking, showing that Fuz is essential for trafficking of cargo to basal bodies and to the apical tips of cilia. Fuz is also essential for exocytosis in secretory cells. Finally, we identify a novel, Rab-related small GTPase as a Fuz interaction partner that is also essential for ciliogenesis and secretion. These results are significant because they provide novel insights into the mechanisms by which developmental regulatory systems like PCP signaling interface with fundamental cellular systems such as the vesicle trafficking machinery.
doi:10.1038/ncb1966
PMCID: PMC2755648  PMID: 19767740
10.  Cranial Osteogenesis and Suture Morphology in Xenopus laevis: A Unique Model System for Studying Craniofacial Development 
PLoS ONE  2009;4(1):e3914.
Background
The tremendous diversity in vertebrate skull formation illustrates the range of forms and functions generated by varying genetic programs. Understanding the molecular basis for this variety may provide us with insights into mechanisms underlying human craniofacial anomalies. In this study, we provide evidence that the anuran Xenopus laevis can be developed as a simplified model system for the study of cranial ossification and suture patterning. The head structures of Xenopus undergo dramatic remodelling during metamorphosis; as a result, tadpole morphology differs greatly from the adult bony skull. Because of the extended larval period in Xenopus, the molecular basis of these alterations has not been well studied.
Methodology/Principal Findings
We examined late larval, metamorphosing, and post-metamorphosis froglet stages in intact and sectioned animals. Using micro-computed tomography (μCT) and tissue staining of the frontoparietal bone and surrounding cartilage, we observed that bone formation initiates from lateral ossification centers, proceeding from posterior-to-anterior. Histological analyses revealed midline abutting and posterior overlapping sutures. To determine the mechanisms underlying the large-scale cranial changes, we examined proliferation, apoptosis, and proteinase activity during remodelling of the skull roof. We found that tissue turnover during metamorphosis could be accounted for by abundant matrix metalloproteinase (MMP) activity, at least in part by MMP-1 and -13.
Conclusion
A better understanding of the dramatic transformation from cartilaginous head structures to bony skull during Xenopus metamorphosis may provide insights into tissue remodelling and regeneration in other systems. Our studies provide some new molecular insights into this process.
doi:10.1371/journal.pone.0003914
PMCID: PMC2615207  PMID: 19156194

Results 1-10 (10)