PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Prediction of gene–phenotype associations in humans, mice, and plants using phenologs 
BMC Bioinformatics  2013;14:203.
Background
Phenotypes and diseases may be related to seemingly dissimilar phenotypes in other species by means of the orthology of underlying genes. Such “orthologous phenotypes,” or “phenologs,” are examples of deep homology, and may be used to predict additional candidate disease genes.
Results
In this work, we develop an unsupervised algorithm for ranking phenolog-based candidate disease genes through the integration of predictions from the k nearest neighbor phenologs, comparing classifiers and weighting functions by cross-validation. We also improve upon the original method by extending the theory to paralogous phenotypes. Our algorithm makes use of additional phenotype data — from chicken, zebrafish, and E. coli, as well as new datasets for C. elegans — establishing that several types of annotations may be treated as phenotypes. We demonstrate the use of our algorithm to predict novel candidate genes for human atrial fibrillation (such as HRH2, ATP4A, ATP4B, and HOPX) and epilepsy (e.g., PAX6 and NKX2-1). We suggest gene candidates for pharmacologically-induced seizures in mouse, solely based on orthologous phenotypes from E. coli. We also explore the prediction of plant gene–phenotype associations, as for the Arabidopsis response to vernalization phenotype.
Conclusions
We are able to rank gene predictions for a significant portion of the diseases in the Online Mendelian Inheritance in Man database. Additionally, our method suggests candidate genes for mammalian seizures based only on bacterial phenotypes and gene orthology. We demonstrate that phenotype information may come from diverse sources, including drug sensitivities, gene ontology biological processes, and in situ hybridization annotations. Finally, we offer testable candidates for a variety of human diseases, plant traits, and other classes of phenotypes across a wide array of species.
doi:10.1186/1471-2105-14-203
PMCID: PMC3704650  PMID: 23800157
2.  Protein abundances are more conserved than mRNA abundances across diverse taxa 
Proteomics  2010;10(23):4209-4212.
Proteins play major roles in most biological processes; as a consequence, protein expression levels are highly regulated. While extensive post-transcriptional, translational and protein degradation control clearly influence protein concentration and functionality, it is often thought that protein abundances are primarily determined by the abundances of the corresponding mRNAs. Hence surprisingly, a recent study showed that abundances of orthologous nematode and fly proteins correlate better than their corresponding mRNA abundances. We tested if this phenomenon is general by collecting and testing matching large-scale protein and mRNA expression datasets from seven different species: two bacteria, yeast, nematode, fly, human, and plant. We find that steady-state abundances of proteins show significantly higher correlation across these diverse phylogenetic taxa than the abundances of their corresponding mRNAs (p=0.0008, paired Wilcoxon). These data support the presence of strong selective pressure to maintain protein abundances during evolution, even when mRNA abundances diverge.
doi:10.1002/pmic.201000327
PMCID: PMC3113407  PMID: 21089048

Results 1-2 (2)