PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Deletions of chromosomal regulatory boundaries are associated with congenital disease 
Genome Biology  2014;15(9):423.
Background
Recent data from genome-wide chromosome conformation capture analysis indicate that the human genome is divided into conserved megabase-sized self-interacting regions called topological domains. These topological domains form the regulatory backbone of the genome and are separated by regulatory boundary elements or barriers. Copy-number variations can potentially alter the topological domain architecture by deleting or duplicating the barriers and thereby allowing enhancers from neighboring domains to ectopically activate genes causing misexpression and disease, a mutational mechanism that has recently been termed enhancer adoption.
Results
We use the Human Phenotype Ontology database to relate the phenotypes of 922 deletion cases recorded in the DECIPHER database to monogenic diseases associated with genes in or adjacent to the deletions. We identify combinations of tissue-specific enhancers and genes adjacent to the deletion and associated with phenotypes in the corresponding tissue, whereby the phenotype matched that observed in the deletion. We compare this computationally with a gene-dosage pathomechanism that attempts to explain the deletion phenotype based on haploinsufficiency of genes located within the deletions. Up to 11.8% of the deletions could be best explained by enhancer adoption or a combination of enhancer adoption and gene-dosage effects.
Conclusions
Our results suggest that enhancer adoption caused by deletions of regulatory boundaries may contribute to a substantial minority of copy-number variation phenotypes and should thus be taken into account in their medical interpretation.
Electronic supplementary material
The online version of this article (doi:10.1186/s13059-014-0423-1) contains supplementary material, which is available to authorized users.
doi:10.1186/s13059-014-0423-1
PMCID: PMC4180961  PMID: 25315429
2.  Modeling Spatial Patterns of Soil Respiration in Maize Fields from Vegetation and Soil Property Factors with the Use of Remote Sensing and Geographical Information System 
PLoS ONE  2014;9(8):e105150.
To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m−2 s−1. The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China.
doi:10.1371/journal.pone.0105150
PMCID: PMC4144886  PMID: 25157827
4.  Human Spermatogenic Failure Purges Deleterious Mutation Load from the Autosomes and Both Sex Chromosomes, including the Gene DMRT1 
PLoS Genetics  2013;9(3):e1003349.
Gonadal failure, along with early pregnancy loss and perinatal death, may be an important filter that limits the propagation of harmful mutations in the human population. We hypothesized that men with spermatogenic impairment, a disease with unknown genetic architecture and a common cause of male infertility, are enriched for rare deleterious mutations compared to men with normal spermatogenesis. After assaying genomewide SNPs and CNVs in 323 Caucasian men with idiopathic spermatogenic impairment and more than 1,100 controls, we estimate that each rare autosomal deletion detected in our study multiplicatively changes a man's risk of disease by 10% (OR 1.10 [1.04–1.16], p<2×10−3), rare X-linked CNVs by 29%, (OR 1.29 [1.11–1.50], p<1×10−3), and rare Y-linked duplications by 88% (OR 1.88 [1.13–3.13], p<0.03). By contrasting the properties of our case-specific CNVs with those of CNV callsets from cases of autism, schizophrenia, bipolar disorder, and intellectual disability, we propose that the CNV burden in spermatogenic impairment is distinct from the burden of large, dominant mutations described for neurodevelopmental disorders. We identified two patients with deletions of DMRT1, a gene on chromosome 9p24.3 orthologous to the putative sex determination locus of the avian ZW chromosome system. In an independent sample of Han Chinese men, we identified 3 more DMRT1 deletions in 979 cases of idiopathic azoospermia and none in 1,734 controls, and found none in an additional 4,519 controls from public databases. The combined results indicate that DMRT1 loss-of-function mutations are a risk factor and potential genetic cause of human spermatogenic failure (frequency of 0.38% in 1306 cases and 0% in 7,754 controls, p = 6.2×10−5). Our study identifies other recurrent CNVs as potential causes of idiopathic azoospermia and generates hypotheses for directing future studies on the genetic basis of male infertility and IVF outcomes.
Author Summary
Infertility is a disease that prevents the transmission of DNA from one generation to the next, and consequently it has been difficult to study the genetics of infertility using classical human genetics methods. Now, new technologies for screening entire genomes for rare and patient-specific mutations are revolutionizing our understanding of reproductively lethal diseases. Here, we apply techniques for variation discovery to study a condition called azoospermia, the failure to produce sperm. Large deletions of the Y chromosome are the primary known genetic risk factor for azoospermia, and genetic testing for these deletions is part of the standard treatment for this condition. We have screened over 300 men with azoospermia for rare deletions and duplications, and find an enrichment of these mutations throughout the genome compared to unaffected men. Our results indicate that sperm production is affected by mutations beyond the Y chromosome and will motivate whole-genome analyses of larger numbers of men with impaired spermatogenesis. Our finding of an enrichment of rare deleterious mutations in men with poor sperm production also raises the possibility that the slightly increased rate of birth defects reported in children conceived by in vitro fertilization may have a genetic basis.
doi:10.1371/journal.pgen.1003349
PMCID: PMC3605256  PMID: 23555275
5.  Andrographolide Protects against LPS-Induced Acute Lung Injury by Inactivation of NF-κB 
PLoS ONE  2013;8(2):e56407.
Background
Nuclear factor-κB (NF-κB) is a central transcriptional factor and a pleiotropic regulator of many genes involved in acute lung injury. Andrographolide is found in the plant of Andrographis paniculata and widely used in Traditional Chinese Medicine, exhibiting potently anti-inflammatory property by inhibiting NF-κB activity. The purpose of our investigation was designed to reveal the effect of andrographolide on various aspects of LPS induced inflammation in vivo and in vitro.
Methods and Results
In vivo, BALB/C mice were subjected to LPS injection with or without andrographolide treatments to induce ALI model. In vitro, MLE-12 cells were stimulated with LPS in the presence and absence of andrographolide. In vivo, pulmonary inflammation, pulmonary edema, ultrastructure changes of type II alveolar epithelial cells, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6 and IL-1β in BALF, along with the expression of VCAM-1 and VEGF were dose-dependently attenuated by andrographolide. Meanwhile, in vitro, the expression of VCAM-1 and VEGF was also reduced by andrographolide. Moreover, our data showed that andrographolide significantly inhibited the ratios of phospho-IKKβ/total IKKβ, phospho-IκBα/total IκBα and phospho-NF-κB p65/total NF-κB p65, and NF-κB p65 DNA binding activities, both in vivo and in vitro.
Conclusions
These results indicate that andrographolide dose-dependently suppressed the severity of LPS-induced ALI, more likely by virtue of andrographolide-mediated NF-κB inhibition at the level of IKKβ activation. These results suggest andrographolide may be considered as an effective and safe drug for the potential treatment of ALI.
doi:10.1371/journal.pone.0056407
PMCID: PMC3578846  PMID: 23437127
6.  Inheritance of low-frequency regulatory SNPs and a rare null mutation in exon-junction complex subunit RBM8A causes TAR 
Nature genetics  2012;44(4):435-S2.
The exon-junction complex (EJC) performs essential RNA processing tasks1-5. Here, we describe the first human disorder, Thrombocytopenia with Absent Radii6 (TAR), caused by deficiency in one of the four EJC subunits. A compound inheritance mechanism of a rare null allele and one of two low-frequency SNPs in the regulatory regions of RBM8A, encoding the Y14 subunit of EJC, causes TAR. We found that this mechanism explained 53 of 55 cases (P<5×10−228) with the rare congenital malformation syndrome. Fifty-one of those 53 carried a previously associated7 submicroscopic deletion of 1q21.1; two carried a truncation or frameshift null mutation in RBM8A. We show that the two regulatory SNPs result in reduction of RBM8A transcription in vitro and that Y14 expression is reduced in platelets from TAR cases. Our data implicate Y14 insufficiency, and presumably EJC defect, as the cause of TAR syndrome.
doi:10.1038/ng.1083
PMCID: PMC3428915  PMID: 22366785
7.  A systematic survey of loss-of-function variants in human protein-coding genes 
Science (New York, N.Y.)  2012;335(6070):823-828.
Genome sequencing studies indicate that all humans carry many genetic variants predicted to cause loss of function (LoF) of protein-coding genes, suggesting unexpected redundancy in the human genome. Here we apply stringent filters to 2,951 putative LoF variants obtained from 185 human genomes to determine their true prevalence and properties. We estimate that human genomes typically contain ~100 genuine LoF variants with ~20 genes completely inactivated. We identify rare and likely deleterious LoF alleles, including 26 known and 21 predicted severe disease-causing variants, as well as common LoF variants in non-essential genes. We describe functional and evolutionary differences between LoF-tolerant and recessive disease genes, and a method for using these differences to prioritize candidate genes found in clinical sequencing studies.
doi:10.1126/science.1215040
PMCID: PMC3299548  PMID: 22344438
8.  High incidence of recurrent copy number variants in patients with isolated and syndromic Müllerian aplasia 
Journal of medical genetics  2011;48(3):197-204.
Background
Congenital malformations involving the Müllerian ducts are observed in around 5% of infertile women. Complete aplasia of the uterus, cervix, and upper vagina, also termed Müllerian aplasia or Mayer–Rokitansky–Kuster–Hauser (MRKH) syndrome, occurs with an incidence of around 1 in 4500 female births, and occurs in both isolated and syndromic forms. Previous reports have suggested that a proportion of cases, especially syndromic cases, are caused by variation in copy number at different genomic loci.
Methods
In order to obtain an overview of the contribution of copy number variation to both isolated and syndromic forms of Müllerian aplasia, copy number assays were performed in a series of 63 cases, of which 25 were syndromic and 38 isolated.
Results
A high incidence (9/63, 14%) of recurrent copy number variants in this cohort is reported here. These comprised four cases of microdeletion at 16p11.2, an autism susceptibility locus not previously associated with Müllerian aplasia, four cases of microdeletion at 17q12, and one case of a distal 22q11.2 microdeletion. Microdeletions at 16p11.2 and 17q12 were found in 4/38 (10.5%) cases with isolated Müllerian aplasia, and at 16p11.2, 17q12 and 22q11.2 (distal) in 5/25 cases (20%) with syndromic Müllerian aplasia.
Conclusion
The finding of microdeletion at 16p11.2 in 2/38 (5%) of isolated and 2/25 (8%) of syndromic cases suggests a significant contribution of this copy number variant alone to the pathogenesis of Müllerian aplasia. Overall, the high incidence of recurrent copy number variants in all forms of Müllerian aplasia has implications for the understanding of the aetiopathogenesis of the condition, and for genetic counselling in families affected by it.
doi:10.1136/jmg.2010.082412
PMCID: PMC3322361  PMID: 21278390
9.  Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls 
Human Molecular Genetics  2011;21(7):1513-1520.
Recurrent rearrangements of chromosome 1q21.1 that occur via non-allelic homologous recombination have been associated with variable phenotypes exhibiting incomplete penetrance, including congenital heart disease (CHD). However, the gene or genes within the ∼1 Mb critical region responsible for each of the associated phenotypes remains unknown. We examined the 1q21.1 locus in 948 patients with tetralogy of Fallot (TOF), 1488 patients with other forms of CHD and 6760 ethnically matched controls using single nucleotide polymorphism genotyping arrays (Illumina 660W and Affymetrix 6.0) and multiplex ligation-dependent probe amplification. We found that duplication of 1q21.1 was more common in cases of TOF than in controls [odds ratio (OR) 30.9, 95% confidence interval (CI) 8.9–107.6); P = 2.2 × 10−7], but deletion was not. In contrast, deletion of 1q21.1 was more common in cases of non-TOF CHD than in controls [OR 5.5 (95% CI 1.4–22.0); P = 0.04] while duplication was not. We also detected rare (n = 3) 100–200 kb duplications within the critical region of 1q21.1 in cases of TOF. These small duplications encompassed a single gene in common, GJA5, and were enriched in cases of TOF in comparison to controls [OR = 10.7 (95% CI 1.8–64.3), P = 0.01]. These findings show that duplication and deletion at chromosome 1q21.1 exhibit a degree of phenotypic specificity in CHD, and implicate GJA5 as the gene responsible for the CHD phenotypes observed with copy number imbalances at this locus.
doi:10.1093/hmg/ddr589
PMCID: PMC3298277  PMID: 22199024
10.  Exploration of signals of positive selection derived from genotype-based human genome scans using re-sequencing data 
Human Genetics  2011;131(5):665-674.
We have investigated whether regions of the genome showing signs of positive selection in scans based on haplotype structure also show evidence of positive selection when sequence-based tests are applied, whether the target of selection can be localized more precisely, and whether such extra evidence can lead to increased biological insights. We used two tools: simulations under neutrality or selection, and experimental investigation of two regions identified by the HapMap2 project as putatively selected in human populations. Simulations suggested that neutral and selected regions should be readily distinguished and that it should be possible to localize the selected variant to within 40 kb at least half of the time. Re-sequencing of two ~300 kb regions (chr4:158Mb and chr10:22Mb) lacking known targets of selection in HapMap CHB individuals provided strong evidence for positive selection within each and suggested the micro-RNA gene hsa-miR-548c as the best candidate target in one region, and changes in regulation of the sperm protein gene SPAG6 in the other.
Electronic supplementary material
The online version of this article (doi:10.1007/s00439-011-1111-9) contains supplementary material, which is available to authorized users.
doi:10.1007/s00439-011-1111-9
PMCID: PMC3325425  PMID: 22057783
11.  Large, rare chromosomal deletions associated with severe early-onset obesity 
Nature  2009;463(7281):666-670.
Obesity is a highly heritable and genetically heterogeneous disorder1. Here we investigated the contribution of copy number variation to obesity in 300 Caucasian patients with severe early-onset obesity, 143 of whom also had developmental delay. Large (>500 kilobases), rare (<1%) deletions were significantly enriched in patients compared to 7,366 controls (P < 0.001). We identified several rare copy number variants that were recurrent in patients but absent or at much lower prevalence in controls. We identified five patients with overlapping deletions on chromosome 16p11.2 that were found in 2 out of 7,366 controls (P < 5 × 10−5). In three patients the deletion co-segregated with severe obesity. Two patients harboured a larger de novo 16p11.2 deletion, extending through a 593-kilobase region previously associated with autism2-4 and mental retardation5; both of these patients had mild developmental delay in addition to severe obesity. In an independent sample of 1,062 patients with severe obesity alone, the smaller 16p11.2 deletion was found in an additional two patients. All 16p11.2 deletions encompass several genes but include SH2B1, which is known to be involved in leptin and insulin signalling6. Deletion carriers exhibited hyperphagia and severe insulin resistance disproportionate for the degree of obesity. We show that copy number variation contributes significantly to the genetic architecture of human obesity.
doi:10.1038/nature08689
PMCID: PMC3108883  PMID: 19966786
12.  Characterising and Predicting Haploinsufficiency in the Human Genome 
PLoS Genetics  2010;6(10):e1001154.
Haploinsufficiency, wherein a single functional copy of a gene is insufficient to maintain normal function, is a major cause of dominant disease. Human disease studies have identified several hundred haploinsufficient (HI) genes. We have compiled a map of 1,079 haplosufficient (HS) genes by systematic identification of genes unambiguously and repeatedly compromised by copy number variation among 8,458 apparently healthy individuals and contrasted the genomic, evolutionary, functional, and network properties between these HS genes and known HI genes. We found that HI genes are typically longer and have more conserved coding sequences and promoters than HS genes. HI genes exhibit higher levels of expression during early development and greater tissue specificity. Moreover, within a probabilistic human functional interaction network HI genes have more interaction partners and greater network proximity to other known HI genes. We built a predictive model on the basis of these differences and annotated 12,443 genes with their predicted probability of being haploinsufficient. We validated these predictions of haploinsufficiency by demonstrating that genes with a high predicted probability of exhibiting haploinsufficiency are enriched among genes implicated in human dominant diseases and among genes causing abnormal phenotypes in heterozygous knockout mice. We have transformed these gene-based haploinsufficiency predictions into haploinsufficiency scores for genic deletions, which we demonstrate to better discriminate between pathogenic and benign deletions than consideration of the deletion size or numbers of genes deleted. These robust predictions of haploinsufficiency support clinical interpretation of novel loss-of-function variants and prioritization of variants and genes for follow-up studies.
Author Summary
Humans, like most complex organisms, have two copies of most genes in their genome, one from the mother and one from the father. This redundancy provides a back-up copy for most genes, should one copy be lost through mutation. For a minority of genes, one functional copy is not enough to sustain normal human function, and mutations causing the loss of function of one of the copies of such genes are a major cause of childhood developmental diseases. Over the past 20 years medical geneticists have identified over 300 such genes, but it is not known how many of the 22,000 genes in our genome may also be sensitive to gene loss. By comparing these ∼300 genes known to be sensitive to gene loss with over 1,000 genes where loss of a single copy does not result in disease, we have identified some key evolutionary and functional similarities between genes sensitive to loss of a single copy. We have used these similarities to predict for most genes in the genome, whether loss of a single copy is likely to result in disease. These predictions will help in the interpretation of mutations seen in patients.
doi:10.1371/journal.pgen.1001154
PMCID: PMC2954820  PMID: 20976243
13.  Independent and population-specific association of risk variants at the IRGM locus with Crohn's disease 
Human Molecular Genetics  2010;19(9):1828-1839.
DNA polymorphisms in a region on chromosome 5q33.1 which contains two genes, immunity related GTPase related family, M (IRGM) and zinc finger protein 300 (ZNF300), are associated with Crohn's disease (CD). The deleted allele of a 20 kb copy number variation (CNV) upstream of IRGM was recently shown to be in strong linkage disequilibrium (LD) with the CD-associated single nucleotide polymorphisms and is itself associated with CD (P < 0.01). The deletion was correlated with increased or reduced expression of IRGM in transformed cells in a cell line-dependent manner, and has been proposed as a likely causal variant. We report here that small insertion/deletion polymorphisms in the promoter and 5′ untranslated region of IRGM are, together with the CNV, strongly associated with CD (P = 1.37 × 10−5 to 1.40 × 10−9), and that the CNV and the 5′-untranslated region variant −308(GTTT)5 contribute independently to CD susceptibility (P = 2.6 × 10−7 and P = 2 × 10−5, respectively). We also show that the CD risk haplotype is associated with a significant decrease in IRGM expression (P < 10−12) in untransformed lymphocytes from CD patients. Further analysis of these variants in a Japanese CD case–control sample and of IRGM expression in HapMap populations revealed that neither the IRGM insertion/deletion polymorphisms nor the CNV was associated with CD or with altered IRGM expression in the Asian population. This suggests that the involvement of the IRGM risk haplotype in the pathogenesis of CD requires gene–gene or gene–environment interactions which are absent in Asian populations, or that none of the variants analysed are causal, and that the true causal variants arose after the European–Asian split.
doi:10.1093/hmg/ddq041
PMCID: PMC2850616  PMID: 20106866
14.  MeMo: a web tool for prediction of protein methylation modifications 
Nucleic Acids Research  2006;34(Web Server issue):W249-W253.
Protein methylation is an important and reversible post-translational modification of proteins (PTMs), which governs cellular dynamics and plasticity. Experimental identification of the methylation site is labor-intensive and often limited by the availability of reagents, such as methyl-specific antibodies and optimization of enzymatic reaction. Computational analysis may facilitate the identification of potential methylation sites with ease and provide insight for further experimentation. Here we present a novel protein methylation prediction web server named MeMo, protein methylation modification prediction, implemented in Support Vector Machines (SVMs). Our present analysis is primarily focused on methylation on lysine and arginine, two major protein methylation sites. However, our computational platform can be easily extended into the analyses of other amino acids. The accuracies for prediction of protein methylation on lysine and arginine have reached 67.1 and 86.7%, respectively. Thus, the MeMo system is a novel tool for predicting protein methylation and may prove useful in the study of protein methylation function and dynamics. The MeMo web server is available at: .
doi:10.1093/nar/gkl233
PMCID: PMC1538891  PMID: 16845004

Results 1-14 (14)