PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (61)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Molecular Findings Among Patients Referred for Clinical Whole-Exome Sequencing 
JAMA  2014;312(18):1870-1879.
IMPORTANCE
Clinical whole-exome sequencing is increasingly used for diagnostic evaluation of patients with suspected genetic disorders.
OBJECTIVE
To perform clinical whole-exome sequencing and report (1) the rate of molecular diagnosis among phenotypic groups, (2) the spectrum of genetic alterations contributing to disease, and (3) the prevalence of medically actionable incidental findings such as FBN1 mutations causing Marfan syndrome.
DESIGN, SETTING, AND PATIENTS
Observational study of 2000 consecutive patients with clinical whole-exome sequencing analyzed between June 2012 and August 2014. Whole-exome sequencing tests were performed at a clinical genetics laboratory in the United States. Results were reported by clinical molecular geneticists certified by the American Board of Medical Genetics and Genomics. Tests were ordered by the patient’s physician. The patients were primarily pediatric (1756 [88%]; mean age, 6 years; 888 females [44%], 1101 males [55%], and 11 fetuses [1% gender unknown]), demonstrating diverse clinical manifestations most often including nervous system dysfunction such as developmental delay.
MAIN OUTCOMES AND MEASURES
Whole-exome sequencing diagnosis rate overall and by phenotypic category, mode of inheritance, spectrum of genetic events, and reporting of incidental findings.
RESULTS
A molecular diagnosis was reported for 504 patients (25.2%) with 58% of the diagnostic mutations not previously reported. Molecular diagnosis rates for each phenotypic category were 143/526 (27.2%; 95% CI, 23.5%–31.2%) for the neurological group, 282/1147 (24.6%; 95% CI, 22.1%–27.2%) for the neurological plus other organ systems group, 30/83 (36.1%; 95% CI, 26.1%–47.5%) for the specific neurological group, and 49/244 (20.1%; 95% CI, 15.6%–25.8%) for the nonneurological group. The Mendelian disease patterns of the 527 molecular diagnoses included 280 (53.1%) autosomal dominant, 181 (34.3%) autosomal recessive (including 5 with uniparental disomy), 65 (12.3%) X-linked, and 1 (0.2%) mitochondrial. Of 504 patients with a molecular diagnosis, 23 (4.6%) had blended phenotypes resulting from 2 single gene defects. About 30% of the positive cases harbored mutations in disease genes reported since 2011. There were 95 medically actionable incidental findings in genes unrelated to the phenotype but with immediate implications for management in 92 patients (4.6%), including 59 patients (3%) with mutations in genes recommended for reporting by the American College of Medical Genetics and Genomics.
CONCLUSIONS AND RELEVANCE
Whole-exome sequencing provided a potential molecular diagnosis for 25% of a large cohort of patients referred for evaluation of suspected genetic conditions, including detection of rare genetic events and new mutations contributing to disease. The yield of whole-exome sequencing may offer advantages over traditional molecular diagnostic approaches in certain patients.
doi:10.1001/jama.2014.14601
PMCID: PMC4326249  PMID: 25326635
2.  Targeted Sequencing in Chromosome 17q Linkage Region Identifies Familial Glioma Candidates in the Gliogene Consortium 
Scientific Reports  2015;5:8278.
Glioma is a rare, but highly fatal, cancer that accounts for the majority of malignant primary brain tumors. Inherited predisposition to glioma has been consistently observed within non-syndromic families. Our previous studies, which involved non-parametric and parametric linkage analyses, both yielded significant linkage peaks on chromosome 17q. Here, we use data from next generation and Sanger sequencing to identify familial glioma candidate genes and variants on chromosome 17q for further investigation. We applied a filtering schema to narrow the original list of 4830 annotated variants down to 21 very rare (<0.1% frequency), non-synonymous variants. Our findings implicate the MYO19 and KIF18B genes and rare variants in SPAG9 and RUNDC1 as candidates worthy of further investigation. Burden testing and functional studies are planned.
doi:10.1038/srep08278
PMCID: PMC4317686  PMID: 25652157
3.  The Common Marmoset Genome Provides Insight into Primate Biology and Evolution 
Worley, Kim C. | Warren, Wesley C. | Rogers, Jeffrey | Locke, Devin | Muzny, Donna M. | Mardis, Elaine R. | Weinstock, George M. | Tardif, Suzette D. | Aagaard, Kjersti M. | Archidiacono, Nicoletta | Rayan, Nirmala Arul | Batzer, Mark A. | Beal, Kathryn | Brejova, Brona | Capozzi, Oronzo | Capuano, Saverio B. | Casola, Claudio | Chandrabose, Mimi M. | Cree, Andrew | Dao, Marvin Diep | de Jong, Pieter J. | del Rosario, Ricardo Cruz-Herrera | Delehaunty, Kim D. | Dinh, Huyen H. | Eichler, Evan | Fitzgerald, Stephen | Flicek, Paul | Fontenot, Catherine C. | Fowler, R. Gerald | Fronick, Catrina | Fulton, Lucinda A. | Fulton, Robert S. | Gabisi, Ramatu Ayiesha | Gerlach, Daniel | Graves, Tina A. | Gunaratne, Preethi H. | Hahn, Matthew W. | Haig, David | Han, Yi | Harris, R. Alan | Herrero, Javier M. | Hillier, LaDeana W. | Hubley, Robert | Hughes, Jennifer F. | Hume, Jennifer | Jhangiani, Shalini N. | Jorde, Lynn B. | Joshi, Vandita | Karakor, Emre | Konkel, Miriam K. | Kosiol, Carolin | Kovar, Christie L. | Kriventseva, Evgenia V. | Lee, Sandra L. | Lewis, Lora R. | Liu, Yih-shin | Lopez, John | Lopez-Otin, Carlos | Lorente-Galdos, Belen | Mansfield, Keith G. | Marques-Bonet, Tomas | Minx, Patrick | Misceo, Doriana | Moncrieff, J. Scott | Morgan, Margaret B. | Muthuswamy, Raveendran | Nazareth, Lynne V. | Newsham, Irene | Nguyen, Ngoc Bich | Okwuonu, Geoffrey O. | Prabhakar, Shyam | Perales, Lora | Pu, Ling-Ling | Puente, Xose S. | Quesada, Victor | Ranck, Megan C. | Raney, Brian J. | Deiros, David Rio | Rocchi, Mariano | Rodriguez, David | Ross, Corinna | Ruffier, Magali | Ruiz, San Juana | Sajjadian, S. | Santibanez, Jireh | Schrider, Daniel R. | Searle, Steve | Skaletsky, Helen | Soibam, Benjamin | Smit, Arian F. A. | Tennakoon, Jayantha B. | Tomaska, Lubomir | Ullmer, Brygg | Vejnar, Charles E. | Ventura, Mario | Vilella, Albert J. | Vinar, Tomas | Vogel, Jan-Hinnerk | Walker, Jerilyn A. | Wang, Qing | Warner, Crystal M. | Wildman, Derek E. | Witherspoon, David J. | Wright, Rita A. | Wu, Yuanqing | Xiao, Weimin | Xing, Jinchuan | Zdobnov, Evgeny M. | Zhu, Baoli | Gibbs, Richard A. | Wilson, Richard K.
Nature genetics  2014;46(8):850-857.
A first analysis of the genome sequence of the common marmoset (Callithrix jacchus), assembled using traditional Sanger methods and Ensembl annotation, has permitted genomic comparison with apes and that old world monkeys and the identification of specific molecular features a rapid reproductive capacity partly due to may contribute to the unique biology of diminutive The common marmoset has prevalence of this dizygotic primate. twins. Remarkably, these twins share placental circulation and exchange hematopoietic stem cells in utero, resulting in adults that are hematopoietic chimeras.
We observed positive selection or non-synonymous substitutions for genes encoding growth hormone / insulin-like growth factor (growth pathways), respiratory complex I (metabolic pathways), immunobiology, and proteases (reproductive and immunity pathways). In addition, both protein-coding and microRNA genes related to reproduction exhibit rapid sequence evolution. This New World monkey genome sequence enables significantly increased power for comparative analyses among available primate genomes and facilitates biomedical research application.
doi:10.1038/ng.3042
PMCID: PMC4138798  PMID: 25038751
4.  Whole-Genome Sequencing in a Patient with Charcot–Marie–Tooth Neuropathy 
The New England journal of medicine  2010;362(13):1181-1191.
BACKGROUND
Whole-genome sequencing may revolutionize medical diagnostics through rapid identification of alleles that cause disease. However, even in cases with simple patterns of inheritance and unambiguous diagnoses, the relationship between disease phenotypes and their corresponding genetic changes can be complicated. Comprehensive diagnostic assays must therefore identify all possible DNA changes in each haplotype and determine which are responsible for the underlying disorder. The high number of rare, heterogeneous mutations present in all humans and the paucity of known functional variants in more than 90% of annotated genes make this challenge particularly difficult. Thus, the identification of the molecular basis of a genetic disease by means of whole-genome sequencing has remained elusive. We therefore aimed to assess the usefulness of human whole-genome sequencing for genetic diagnosis in a patient with Charcot–Marie–Tooth disease.
METHODS
We identified a family with a recessive form of Charcot–Marie–Tooth disease for which the genetic basis had not been identified. We sequenced the whole genome of the proband, identified all potential functional variants in genes likely to be related to the disease, and genotyped these variants in the affected family members.
RESULTS
We identified and validated compound, heterozygous, causative alleles in SH3TC2 (the SH3 domain and tetratricopeptide repeats 2 gene), involving two mutations, in the proband and in family members affected by Charcot–Marie–Tooth disease. Separate subclinical phenotypes segregated independently with each of the two mutations; heterozygous mutations confer susceptibility to neuropathy, including the carpal tunnel syndrome.
CONCLUSIONS
As shown in this study of a family with Charcot–Marie–Tooth disease, whole-genome sequencing can identify clinically relevant variants and provide diagnostic information to inform the care of patients.
doi:10.1056/NEJMoa0908094
PMCID: PMC4036802  PMID: 20220177
5.  The Sheep Genome Illuminates Biology of the Rumen and Lipid Metabolism 
Science (New York, N.Y.)  2014;344(6188):1168-1173.
Sheep (Ovis aries) are a major source of meat, milk and fiber in the form of wool, and represent a distinct class of animals that have a specialized digestive organ, the rumen, which carries out the initial digestion of plant material. We have developed and analyzed a high quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants, compared to non-ruminant animals.
doi:10.1126/science.1252806
PMCID: PMC4157056  PMID: 24904168
6.  The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima 
Chipman, Ariel D. | Ferrier, David E. K. | Brena, Carlo | Qu, Jiaxin | Hughes, Daniel S. T. | Schröder, Reinhard | Torres-Oliva, Montserrat | Znassi, Nadia | Jiang, Huaiyang | Almeida, Francisca C. | Alonso, Claudio R. | Apostolou, Zivkos | Aqrawi, Peshtewani | Arthur, Wallace | Barna, Jennifer C. J. | Blankenburg, Kerstin P. | Brites, Daniela | Capella-Gutiérrez, Salvador | Coyle, Marcus | Dearden, Peter K. | Du Pasquier, Louis | Duncan, Elizabeth J. | Ebert, Dieter | Eibner, Cornelius | Erikson, Galina | Evans, Peter D. | Extavour, Cassandra G. | Francisco, Liezl | Gabaldón, Toni | Gillis, William J. | Goodwin-Horn, Elizabeth A. | Green, Jack E. | Griffiths-Jones, Sam | Grimmelikhuijzen, Cornelis J. P. | Gubbala, Sai | Guigó, Roderic | Han, Yi | Hauser, Frank | Havlak, Paul | Hayden, Luke | Helbing, Sophie | Holder, Michael | Hui, Jerome H. L. | Hunn, Julia P. | Hunnekuhl, Vera S. | Jackson, LaRonda | Javaid, Mehwish | Jhangiani, Shalini N. | Jiggins, Francis M. | Jones, Tamsin E. | Kaiser, Tobias S. | Kalra, Divya | Kenny, Nathan J. | Korchina, Viktoriya | Kovar, Christie L. | Kraus, F. Bernhard | Lapraz, François | Lee, Sandra L. | Lv, Jie | Mandapat, Christigale | Manning, Gerard | Mariotti, Marco | Mata, Robert | Mathew, Tittu | Neumann, Tobias | Newsham, Irene | Ngo, Dinh N. | Ninova, Maria | Okwuonu, Geoffrey | Ongeri, Fiona | Palmer, William J. | Patil, Shobha | Patraquim, Pedro | Pham, Christopher | Pu, Ling-Ling | Putman, Nicholas H. | Rabouille, Catherine | Ramos, Olivia Mendivil | Rhodes, Adelaide C. | Robertson, Helen E. | Robertson, Hugh M. | Ronshaugen, Matthew | Rozas, Julio | Saada, Nehad | Sánchez-Gracia, Alejandro | Scherer, Steven E. | Schurko, Andrew M. | Siggens, Kenneth W. | Simmons, DeNard | Stief, Anna | Stolle, Eckart | Telford, Maximilian J. | Tessmar-Raible, Kristin | Thornton, Rebecca | van der Zee, Maurijn | von Haeseler, Arndt | Williams, James M. | Willis, Judith H. | Wu, Yuanqing | Zou, Xiaoyan | Lawson, Daniel | Muzny, Donna M. | Worley, Kim C. | Gibbs, Richard A. | Akam, Michael | Richards, Stephen
PLoS Biology  2014;12(11):e1002005.
Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.
Author Summary
Arthropods are the most abundant animals on earth. Among them, insects clearly dominate on land, whereas crustaceans hold the title for the most diverse invertebrates in the oceans. Much is known about the biology of these groups, not least because of genomic studies of the fruit fly Drosophila, the water flea Daphnia, and other species used in research. Here we report the first genome sequence from a species belonging to a lineage that has previously received very little attention—the myriapods. Myriapods were among the first arthropods to invade the land over 400 million years ago, and survive today as the herbivorous millipedes and venomous centipedes, one of which—Strigamia maritima—we have sequenced here. We find that the genome of this centipede retains more characteristics of the presumed arthropod ancestor than other sequenced insect genomes. The genome provides access to many aspects of myriapod biology that have not been studied before, suggesting, for example, that they have diversified receptors for smell that are quite different from those used by insects. In addition, it shows specific consequences of the largely subterranean life of this particular species, which seems to have lost the genes for all known light-sensing molecules, even though it still avoids light.
doi:10.1371/journal.pbio.1002005
PMCID: PMC4244043  PMID: 25423365
7.  Exonic duplication CNV of NDRG1 associated with autosomal-recessive HMSN-Lom/CMT4D 
Purpose
Copy-number variations as a mutational mechanism contribute significantly to human disease. Approximately one-half of the patients with Charcot–Marie–Tooth (CMT) disease have a 1.4 Mb duplication copy-number variation as the cause of their neuropathy. However, non-CMT1A neuropathy patients rarely have causative copy-number variations, and to date, autosomal-recessive CMT disease has not been associated with copy-number variation as a mutational mechanism.
Methods
We performed Agilent 8 × 60K array comparative genomic hybridization on DNA from 12 recessive Turkish families with CMT disease. Additional molecular studies were conducted to detect breakpoint junctions and to evaluate gene expression levels in a family in which we detected an intragenic duplication copy-number variation.
Results
We detected an ~6.25 kb homozygous intragenic duplication in NDRG1, a gene known to be causative for recessive HMSNL/CMT4D, in three individuals from a Turkish family with CMT neuropathy. Further studies showed that this intragenic copy-number variation resulted in a homozygous duplication of exons 6–8 that caused decreased mRNA expression of NDRG1.
Conclusion
Exon-focused high-resolution array comparative genomic hybridization enables the detection of copy-number variation carrier states in recessive genes, particularly small copy-number variations encompassing or disrupting single genes. In families for whom a molecular diagnosis has not been elucidated by conventional clinical assays, an assessment for copy-number variations in known CMT genes might be considered.
doi:10.1038/gim.2013.155
PMCID: PMC4224029  PMID: 24136616
autosomal recessive; Charcot–Marie–Tooth disease; CMT4D; CNV; NDRG1
8.  Exome sequencing identification of a GJB1 missense mutation in a kindred with X-linked spinocerebellar ataxia (SCA-X1) 
Human Molecular Genetics  2013;22(21):4329-4338.
We undertook a gene identification and molecular characterization project in a large kindred originally clinically diagnosed with SCA-X1. While presenting with ataxia, this kindred also had some unique peripheral nervous system features. The implicated region on the X chromosome was delineated using haplotyping. Large deletions and duplications were excluded by array comparative genomic hybridization. Exome sequencing was undertaken in two affected subjects. The single identified X chromosome candidate variant was then confirmed to co-segregate appropriately in all affected, carrier and unaffected family members by Sanger sequencing. The variant was confirmed to be novel by comparison with dbSNP, and filtering for a minor allele frequency of <1% in 1000 Genomes project, and was not present in the NHLBI Exome Sequencing Project or a local database at the BCM HGSC. Functional experiments on transfected cells were subsequently undertaken to assess the biological effect of the variant in vitro. The variant identified consisted of a previously unidentified non-synonymous variant, GJB1 p.P58S, in the Connexin 32/Gap Junction Beta 1 gene. Segregation studies with Sanger sequencing confirmed the presence of the variant in all affected individuals and one known carrier, and the absence of the variant in unaffected members. Functional studies confirmed that the p.P58S variant reduced the number and size of gap junction plaques, but the conductance of the gap junctions was unaffected. Two X-linked ataxias have been associated with genetic loci, with the first of these recently characterized at the molecular level. This represents the second kindred with molecular characterization of X-linked ataxia, and is the first instance of a previously unreported GJB1 mutation with a dominant and permanent ataxia phenotype, although different CNS deficits have previously been reported. This pedigree has also been relatively unique in its phenotype due to the presence of central and peripheral neural abnormalities. Other X-linked SCAs with unique features might therefore also potentially represent variable phenotypic expression of other known neurological entities.
doi:10.1093/hmg/ddt282
PMCID: PMC3792691  PMID: 23773993
9.  Whole Exome Sequencing Identifies Novel Genes for Fetal Hemoglobin Response to Hydroxyurea in Children with Sickle Cell Anemia 
PLoS ONE  2014;9(10):e110740.
Hydroxyurea has proven efficacy in children and adults with sickle cell anemia (SCA), but with considerable inter-individual variability in the amount of fetal hemoglobin (HbF) produced. Sibling and twin studies indicate that some of that drug response variation is heritable. To test the hypothesis that genetic modifiers influence pharmacological induction of HbF, we investigated phenotype-genotype associations using whole exome sequencing of children with SCA treated prospectively with hydroxyurea to maximum tolerated dose (MTD). We analyzed 171 unrelated patients enrolled in two prospective clinical trials, all treated with dose escalation to MTD. We examined two MTD drug response phenotypes: HbF (final %HbF minus baseline %HbF), and final %HbF. Analyzing individual genetic variants, we identified multiple low frequency and common variants associated with HbF induction by hydroxyurea. A validation cohort of 130 pediatric sickle cell patients treated to MTD with hydroxyurea was genotyped for 13 non-synonymous variants with the strongest association with HbF response to hydroxyurea in the discovery cohort. A coding variant in Spalt-like transcription factor, or SALL2, was associated with higher final HbF in this second independent replication sample and SALL2 represents an outstanding novel candidate gene for further investigation. These findings may help focus future functional studies and provide new insights into the pharmacological HbF upregulation by hydroxyurea in patients with SCA.
doi:10.1371/journal.pone.0110740
PMCID: PMC4215999  PMID: 25360671
10.  Clinical Whole-Exome Sequencing for the Diagnosis of Mendelian Disorders 
The New England journal of medicine  2013;369(16):1502-1511.
BACKGROUND
Whole-exome sequencing is a diagnostic approach for the identification of molecular defects in patients with suspected genetic disorders.
METHODS
We developed technical, bioinformatic, interpretive, and validation pipelines for whole-exome sequencing in a certified clinical laboratory to identify sequence variants underlying disease phenotypes in patients.
RESULTS
We present data on the first 250 probands for whom referring physicians ordered whole-exome sequencing. Patients presented with a range of phenotypes suggesting potential genetic causes. Approximately 80% were children with neurologic pheno-types. Insurance coverage was similar to that for established genetic tests. We identified 86 mutated alleles that were highly likely to be causative in 62 of the 250 patients, achieving a 25% molecular diagnostic rate (95% confidence interval, 20 to 31). Among the 62 patients, 33 had autosomal dominant disease, 16 had auto-somal recessive disease, and 9 had X-linked disease. A total of 4 probands received two nonoverlapping molecular diagnoses, which potentially challenged the clinical diagnosis that had been made on the basis of history and physical examination. A total of 83% of the autosomal dominant mutant alleles and 40% of the X-linked mutant alleles occurred de novo. Recurrent clinical phenotypes occurred in patients with mutations that were highly likely to be causative in the same genes and in different genes responsible for genetically heterogeneous disorders.
CONCLUSIONS
Whole-exome sequencing identified the underlying genetic defect in 25% of consecutive patients referred for evaluation of a possible genetic condition. (Funded by the National Human Genome Research Institute.)
doi:10.1056/NEJMoa1306555
PMCID: PMC4211433  PMID: 24088041
11.  Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators 
Nature  2014;508(7497):494-499.
The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three percent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was non-random, and in two cases, convergent across placental and marsupial mammals. We conclude that the Y chromosome's gene content became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and plays unappreciated roles in Turner syndrome and in phenotypic differences between the sexes in health and disease.
doi:10.1038/nature13206
PMCID: PMC4139287  PMID: 24759411
12.  Whole-Exome Sequencing Reveals GPIHBP1 Mutations in Infantile Colitis With Severe Hypertriglyceridemia 
Severe congenital hypertriglyceridemia (HTG) is a rare disorder caused by mutations in genes affecting lipoprotein lipase (LPL) activity. Here we report a 5-week-old Hispanic girl with severe HTG (12,031 mg/dL, normal limit 150 mg/dL) who presented with the unusual combination of lower gastrointestinal bleeding and milky plasma. Initial colonoscopy was consistent with colitis, which resolved with reduction of triglycerides. After negative sequencing of the LPL gene, whole-exome sequencing revealed novel compound heterozygous mutations in GPIHBP1. Our study broadens the phenotype of GPIHBP1-associated HTG, reinforces the effectiveness of whole-exome sequencing in Mendelian diagnoses, and implicates triglycer-ides in gastrointestinal mucosal injury.
doi:10.1097/MPG.0000000000000363
PMCID: PMC4203304  PMID: 24614124
chylomicronemia; colitis; hyperlipoproteinemia; lipoprotein lipase; next-generation sequencing
13.  Sequencing of SCN5A identifies rare and common variants associated with cardiac conduction 
Background
The cardiac sodium channel SCN5A regulates atrioventricular and ventricular conduction. Genetic variants in this gene are associated with PR and QRS intervals. We sought to further characterize the contribution of rare and common coding variation in SCN5A to cardiac conduction.
Methods and Results
In the Cohorts for Heart and Aging Research in Genomic Epidemiology Targeted Sequencing Study (CHARGE), we performed targeted exonic sequencing of SCN5A (n=3699, European-ancestry individuals) and identified 4 common (minor allele frequency >1%) and 157 rare variants. Common and rare SCN5A coding variants were examined for association with PR and QRS intervals through meta-analysis of European ancestry participants from CHARGE, NHLBI’s Exome Sequencing Project (ESP, n=607) and the UK10K (n=1275) and by examining ESP African-ancestry participants (N=972). Rare coding SCN5A variants in aggregate were associated with PR interval in European and African-ancestry participants (P=1.3×10−3). Three common variants were associated with PR and/or QRS interval duration among European-ancestry participants and one among African-ancestry participants. These included two well-known missense variants; rs1805124 (H558R) was associated with PR and QRS shortening in European-ancestry participants (P=6.25×10−4 and P=5.2×10−3 respectively) and rs7626962 (S1102Y) was associated with PR shortening in those of African ancestry (P=2.82×10−3). Among European-ancestry participants, two novel synonymous variants, rs1805126 and rs6599230, were associated with cardiac conduction. Our top signal, rs1805126 was associated with PR and QRS lengthening (P=3.35×10−7 and P=2.69×10−4 respectively), and rs6599230 was associated with PR shortening (P=2.67×10−5).
Conclusions
By sequencing SCN5A, we identified novel common and rare coding variants associated with cardiac conduction.
doi:10.1161/CIRCGENETICS.113.000098
PMCID: PMC4177904  PMID: 24951663
PR interval; QRS interval; genetics; sequencing; cohort
14.  Integrative genomic characterization of oral squamous cell carcinomaidentifies frequent somatic drivers 
Cancer discovery  2013;3(7):10.1158/2159-8290.CD-12-0537.
The survival of patients with oral squamous cell carcinoma (OSCC) has not changed significantly in several decades, leading clinicians and investigators to search for promising molecular targets. To this end, we performed comprehensive genomic analysis of gene expression, copy number, methylation and point mutations in OSCC. Integrated analysis revealed more somatic events than previously reported, identifying four major driver pathways (mitogenic signaling, Notch, cell cycle, TP53) and two additional key genes (FAT1, CASP8). The Notch pathway was defective in 66% of patients, and in follow-up studies of mechanism, functional NOTCH1 signaling inhibited proliferation of OSCC cell lines. Frequent mutation of CASP8 defines a new molecular subtype of OSCC with few copy number changes. Although genomic alterations are dominated by loss of tumor suppressor genes, 80% of patients harbored at least one genomic alteration in a targetable gene, suggesting that novel approaches to treatment may be possible for this debilitating disease.
doi:10.1158/2159-8290.CD-12-0537
PMCID: PMC3858325  PMID: 23619168
Integrated genomics; head and neck/oral cancers; NOTCH1; CASP8
15.  Structural variation and missense mutation in SBDS associated with Shwachman-Diamond syndrome 
BMC Medical Genetics  2014;15:64.
Background
Shwachman–Diamond syndrome (SDS) is an autosomal recessive ribosomopathy caused mainly by compound heterozygous mutations in SBDS. Structural variation (SV) involving the SBDS locus has been rarely reported in association with the disease. We aimed to determine whether an SV contributed to the pathogenesis of a case lacking biallelic SBDS point mutations.
Case presentation
Whole exome sequencing was performed in a patient with SDS lacking biallelic SBDS point mutations. Array comparative genomic hybridization and Southern blotting were used to seek SVs across the SBDS locus. Locus-specific polymerase chain reaction (PCR) encompassing flanking intronic sequence was also performed to investigate mutation within the locus. RNA expression and Western blotting were performed to analyze allele and protein expression. We found the child harbored a single missense mutation in SBDS (c.98A > C; p.K33T), inherited from the mother, and an SV in the SBDS locus, inherited from the father. The missense allele and SV segregated in accordance with Mendelian expectations for autosomal recessive SDS. Complementary DNA and western blotting analysis and locus specific PCR support the contention that the SV perturbed SBDS protein expression in the father and child.
Conclusion
Our findings implicate genomic rearrangements in the pathogenesis of some cases of SDS and support patients lacking biallelic SBDS point mutations be tested for SV within the SBDS locus.
doi:10.1186/1471-2350-15-64
PMCID: PMC4057820  PMID: 24898207
Shwachman-Diamond syndrome; SBDS; Structural variation; Genomic rearrangement; Non-allelic homologous recombination; Low copy repeat; Whole exome sequencing; Copy number variation; Recessive disease
16.  Mutations in VRK1 Associated With Complex Motor and Sensory Axonal Neuropathy Plus Microcephaly 
JAMA neurology  2013;70(12):1491-1498.
IMPORTANCE
Patients with rare diseases and complex clinical presentations represent a challenge for clinical diagnostics. Genomic approaches are allowing the identification of novel variants in genes for very rare disorders, enabling a molecular diagnosis. Genomics is also revealing a phenotypic expansion whereby the full spectrum of clinical expression conveyed by mutant alleles at a locus can be better appreciated.
OBJECTIVE
To elucidate the molecular cause of a complex neuropathy phenotype in 3 patients by applying genomic sequencing strategies.
DESIGN, SETTING, AND PARTICIPANTS
Three affected individuals from 2 unrelated families presented with a complex neuropathy phenotype characterized by axonal sensorimotor neuropathy and microcephaly. They were recruited into the Centers for Mendelian Genomics research program to identify the molecular cause of their phenotype. Whole-genome, targeted whole-exome sequencing, and high-resolution single-nucleotide polymorphism arrays were performed in genetics clinics of tertiary care pediatric hospitals and biomedical research institutions.
MAIN OUTCOMES AND MEASURES
Whole-genome and whole-exome sequencing identified the variants responsible for the patients’ clinical phenotype.
RESULTS
We identified compound heterozygous alleles in 2 affected siblings from 1 family and a homozygous nonsense variant in the third unrelated patient in the vaccinia-related kinase 1 gene (VRK1). In the latter subject, we found a common haplotype on which the nonsense mutation occurred and that segregates in the Ashkenazi Jewish population.
CONCLUSIONS AND RELEVANCE
We report the identification of disease-causing alleles in 3 children from 2 unrelated families with a previously uncharacterized complex axonal motor and sensory neuropathy accompanied by severe nonprogressive microcephaly and cerebral dysgenesis. Our data raise the question of whether VRK1 mutations disturb cell cycle progression and may result in apoptosis of cells in the nervous system. The application of unbiased genomic approaches allows the identification of potentially pathogenic mutations in unsuspected genes in highly genetically heterogeneous and uncharacterized neurological diseases.
doi:10.1001/jamaneurol.2013.4598
PMCID: PMC4039291  PMID: 24126608
17.  Heterozygous De Novo and Inherited Mutations in the Smooth Muscle Actin (ACTG2) Gene Underlie Megacystis-Microcolon-Intestinal Hypoperistalsis Syndrome 
PLoS Genetics  2014;10(3):e1004258.
Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is a rare disorder of enteric smooth muscle function affecting the intestine and bladder. Patients with this severe phenotype are dependent on total parenteral nutrition and urinary catheterization. The cause of this syndrome has remained a mystery since Berdon's initial description in 1976. No genes have been clearly linked to MMIHS. We used whole-exome sequencing for gene discovery followed by targeted Sanger sequencing in a cohort of patients with MMIHS and intestinal pseudo-obstruction. We identified heterozygous ACTG2 missense variants in 15 unrelated subjects, ten being apparent de novo mutations. Ten unique variants were detected, of which six affected CpG dinucleotides and resulted in missense mutations at arginine residues, perhaps related to biased usage of CpG containing codons within actin genes. We also found some of the same heterozygous mutations that we observed as apparent de novo mutations in MMIHS segregating in families with intestinal pseudo-obstruction, suggesting that ACTG2 is responsible for a spectrum of smooth muscle disease. ACTG2 encodes γ2 enteric actin and is the first gene to be clearly associated with MMIHS, suggesting an important role for contractile proteins in enteric smooth muscle disease.
Author Summary
In 1976, a radiologist, Walter Berdon described a group of patients with a rare intestinal and bladder disorder in which the smooth muscle of those organs failed to contract. These patients are unable to digest food, require multiple abdominal surgeries and are diagnosed with megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS). Since the description of MMIHS, the genes that cause it have remained a mystery. We followed and obtained DNA from patients with this disorder over a period of over 14 years and assembled a large group of cases. We used whole-exome sequencing, a powerful tool used to identify disease genes, and found mutations in ACTG2, a visceral actin gene. Actins are components of muscle contractile units, and one Finnish family has been previously found with less severe gastrointestinal problems due to mutations in this gene. In our patients, we find de novo mutations in the majority of cases of MMIHS. However, we also find families with the disease over several generations due to these same mutations. This work provides the first disease gene for MMIHS, and suggests new treatment options.
doi:10.1371/journal.pgen.1004258
PMCID: PMC3967950  PMID: 24676022
18.  Expanding the phenotypic spectrum of ARID1B-mediated disorders and identification of altered cell-cycle dynamics due to ARID1B haploinsufficiency 
Background
Mutations in genes encoding components of the Brahma-associated factor (BAF) chromatin remodeling complex have recently been shown to contribute to multiple syndromes characterised by developmental delay and intellectual disability. ARID1B mutations have been identified as the predominant cause of Coffin-Siris syndrome and have also been shown to be a frequent cause of nonsyndromic intellectual disability. Here, we investigate the molecular basis of a patient with an overlapping but distinctive phenotype of intellectual disability, plantar fat pads and facial dysmorphism.
Methods/results
High density microarray analysis of the patient demonstrated a heterozygous deletion at 6q25.3, which resulted in the loss of four genes including AT Rich Interactive Domain 1B (ARID1B). Subsequent quantitative real-time PCR analysis revealed ARID1B haploinsufficiency in the patient. Analysis of both patient-derived and ARID1B knockdown fibroblasts after serum starvation demonstrated delayed cell cycle re-entry associated with reduced cell number in the S1 phase. Based on the patient’s distinctive phenotype, we ascertained four additional patients and identified heterozygous de novo ARID1B frameshift or nonsense mutations in all of them.
Conclusions
This study broadens the spectrum of ARID1B associated phenotypes by describing a distinctive phenotype including plantar fat pads but lacking the hypertrichosis or fifth nail hypoplasia associated with Coffin-Siris syndrome. We present the first direct evidence in patient-derived cells that alterations in cell cycle contribute to the underlying pathogenesis of syndromes associated with ARID1B haploinsufficiency.
doi:10.1186/1750-1172-9-43
PMCID: PMC4022252  PMID: 24674232
Intellectual disability; Chromatin remodelling; Coffin-Siris syndrome; ARID1B mutation; Cell cycle; Haploinsufficiency
19.  Identification of TP53 as an Acute Lymphocytic Leukemia Susceptibility Gene Through Exome Sequencing 
Pediatric blood & cancer  2012;60(6):E1-E3.
Although acute lymphocytic leukemia (ALL) is the most common childhood cancer, genetic predisposition to ALL remains poorly understood. Whole-exome sequencing was performed in an extended kindred in which five individuals had been diagnosed with leukemia. Analysis revealed a nonsense variant of TP53 which has been previously reported in families with sarcomas and other typical Li Fraumeni syndrome-associated cancers but never in a familial leukemia kindred. This unexpected finding enabled identification of an appropriate sibling bone marrow donor and illustrates that exome sequencing will reveal atypical clinical presentations of even well-studied genes.
doi:10.1002/pbc.24417
PMCID: PMC3926299  PMID: 23255406
exome sequencing; acute lymphocytic leukemia; genetic predisposition to disease; genetic testing
20.  Draft genome sequences and description of Lactobacillus rhamnosus strains L31, L34, and L35 
Standards in Genomic Sciences  2014;9(3):744-754.
Lactobacillus rhamnosus is a facultative, lactic acid bacterium in the phylum Firmicutes. Lactobacillus spp. are generally considered beneficial, and specific strains of L. rhamnosus are validated probiotics. We describe the draft genomes of three L. rhamnosus strains (L31, L34, and L35) isolated from the feces of Thai breastfed infants, which exhibit anti-inflammatory properties in vitro. The three genomes range between 2.8 – 2.9 Mb, and contain approximately 2,700 protein coding genes.
doi:10.4056/sigs.5048907
PMCID: PMC4148986  PMID: 25197459
Lactobacillus rhamnosus; comparative genomics; probiotics; lactic acid bacteria; anti-inflammatory
21.  Finding the missing honey bee genes: lessons learned from a genome upgrade 
BMC Genomics  2014;15:86.
Background
The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes.
Results
Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data.
Conclusions
Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.
doi:10.1186/1471-2164-15-86
PMCID: PMC4028053  PMID: 24479613
Apis mellifera; GC content; Gene annotation; Gene prediction; Genome assembly; Genome improvement; Genome sequencing; Repetitive DNA; Transcriptome
22.  Complete Khoisan and Bantu genomes from southern Africa 
Nature  2010;463(7283):943-947.
The genetic structure of the indigenous hunter-gatherer peoples of southern Africa, the oldest known lineage of modern human, is important for understanding human diversity. Studies based on mitochondrial1 and small sets of nuclear markers2 have shown that these hunter-gatherers, known as Khoisan, San, or Bushmen, are genetically divergent from other humans1,3. However, until now, fully sequenced human genomes have been limited to recently diverged populations4–8. Here we present the complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and a Bantu from southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, including 13,146 novel amino acid variants. In terms of nucleotide substitutions, the Bushmen seem to be, on average, more different from each other than, for example, a European and an Asian. Observed genomic differences between the hunter-gatherers and others may help to pinpoint genetic adaptations to an agricultural lifestyle. Adding the described variants to current databases will facilitate inclusion of southern Africans in medical research efforts, particularly when family and medical histories can be correlated with genome-wide data.
doi:10.1038/nature08795
PMCID: PMC3890430  PMID: 20164927
23.  Combined sequence-based and genetic mapping analysis of complex traits in outbred rats 
Nature genetics  2013;45(7):10.1038/ng.2644.
Genetic mapping on fully sequenced individuals is transforming our understanding of the relationship between molecular variation and variation in complex traits. Here we report a combined sequence and genetic mapping analysis in outbred rats that maps 355 quantitative trait loci for 122 phenotypes. We identify 35 causal genes involved in 31 phenotypes, implicating novel genes in models of anxiety, heart disease and multiple sclerosis. The relation between sequence and genetic variation is unexpectedly complex: at approximately 40% of quantitative trait loci a single sequence variant cannot account for the phenotypic effect. Using comparable sequence and mapping data from mice, we show the extent and spatial pattern of variation in inbred rats differ significantly from those of inbred mice, and that the genetic variants in orthologous genes rarely contribute to the same phenotype in both species.
doi:10.1038/ng.2644
PMCID: PMC3821058  PMID: 23708188
24.  Exome sequencing resolves apparent incidental findings and reveals further complexity of SH3TC2 variant alleles causing Charcot-Marie-Tooth neuropathy 
Genome Medicine  2013;5(6):57.
Background
The debate regarding the relative merits of whole genome sequencing (WGS) versus exome sequencing (ES) centers around comparative cost, average depth of coverage for each interrogated base, and their relative efficiency in the identification of medically actionable variants from the myriad of variants identified by each approach. Nevertheless, few genomes have been subjected to both WGS and ES, using multiple next generation sequencing platforms. In addition, no personal genome has been so extensively analyzed using DNA derived from peripheral blood as opposed to DNA from transformed cell lines that may either accumulate mutations during propagation or clonally expand mosaic variants during cell transformation and propagation.
Methods
We investigated a genome that was studied previously by SOLiD chemistry using both ES and WGS, and now perform six independent ES assays (Illumina GAII (x2), Illumina HiSeq (x2), Life Technologies' Personal Genome Machine (PGM) and Proton), and one additional WGS (Illumina HiSeq).
Results
We compared the variants identified by the different methods and provide insights into the differences among variants identified between ES runs in the same technology platform and among different sequencing technologies. We resolved the true genotypes of medically actionable variants identified in the proband through orthogonal experimental approaches. Furthermore, ES identified an additional SH3TC2 variant (p.M1?) that likely contributes to the phenotype in the proband.
Conclusions
ES identified additional medically actionable variant calls and helped resolve ambiguous single nucleotide variants (SNV) documenting the power of increased depth of coverage of the captured targeted regions. Comparative analyses of WGS and ES reveal that pseudogenes and segmental duplications may explain some instances of apparent disease mutations in unaffected individuals.
doi:10.1186/gm461
PMCID: PMC3706849  PMID: 23806086
Exome sequencing; Whole-genome sequencing; Incidental findings; SH3TC2; Personal genomes; Precision medicine
25.  Complete Genome Sequence of Elephant Endotheliotropic Herpesvirus 1A 
Genome Announcements  2013;1(2):e00106-13.
Elephant endotheliotropic herpesvirus 1A is a member of the Proboscivirus genus and is a major cause of fatal hemorrhagic disease in endangered juvenile Asian elephants worldwide. Here, we report the first complete genome sequence from this genus, obtained directly from necropsy DNA, in which 60 of the 115 predicted genes are not found in any known herpesvirus.
doi:10.1128/genomeA.00106-13
PMCID: PMC3624679  PMID: 23580705

Results 1-25 (61)