Search tips
Search criteria

Results 1-25 (34)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Mitogen-Induced B-Cell Proliferation Activates Chk2-Dependent G1/S Cell Cycle Arrest 
PLoS ONE  2014;9(1):e87299.
B-cell activation and proliferation can be induced by a variety of extracellular stimuli. The fate of an activated B cell following mitogen stimulation can be dictated by the strength or duration of the signal, the expression of downstream signaling components necessary to promote proliferation, and the cell intrinsic sensors and regulators of the proliferative program. Previously we have identified the DNA damage response (DDR) signaling pathway as a cell intrinsic sensor that is activated upon latent infection of primary human B cells by Epstein-Barr virus (EBV). Here we have assessed the role of the DDR as a limiting factor in the proliferative response to non-viral B-cell mitogens. We report that TLR9 activation through CpG-rich oligonucleotides induced B-cell hyper-proliferation and an ATM/Chk2 downstream signaling pathway. However, B-cell activation through the CD40 pathway coupled with interleukin-4 (IL-4) promoted proliferation less robustly and only a modest DDR. These two mitogens, but not EBV, modestly induced intrinsic apoptosis that was independent from the DDR. However, all three mitogens triggered a DDR-dependent G1/S phase cell cycle arrest preventing B-cell proliferation. The extent of G1/S arrest, as evidenced by release through Chk2 inhibition, correlated with B-cell proliferation rates. These findings have implications for the regulation of extra-follicular B-cell activation as it may pertain to the development of auto-immune diseases or lymphoma.
PMCID: PMC3907503  PMID: 24498068
2.  Productively Infected Murine Kaposi's Sarcoma-Like Tumors Define New Animal Models for Studying and Targeting KSHV Oncogenesis and Replication 
PLoS ONE  2014;9(1):e87324.
Kaposi's sarcoma (KS) is an AIDS-defining cancer caused by the KS-associated herpesvirus (KSHV). KS tumors are composed of KSHV-infected spindle cells of vascular origin with aberrant neovascularization and erythrocyte extravasation. KSHV genes expressed during both latent and lytic replicative cycles play important roles in viral oncogenesis. Animal models able to recapitulate both viral and host biological characteristics of KS are needed to elucidate oncogenic mechanisms, for developing targeted therapies, and to trace cellular components of KS ontogeny. Herein, we describe two new murine models of Kaposi's sarcoma. We found that murine bone marrow-derived cells, whether established in culture or isolated from fresh murine bone marrow, were infectable with rKSHV.219, formed KS-like tumors in immunocompromised mice and produced mature herpesvirus-like virions in vivo. Further, we show in vivo that the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA/Vorinostat) enhanced viral lytic reactivation. We propose that these novel models are ideal for studying both viral and host contributions to KSHV-induced oncogenesis as well as for testing virally-targeted antitumor strategies for the treatment of Kaposi's sarcoma. Furthermore, our isolation of bone marrow-derived cell populations containing a cell type that, when infected with KSHV, renders a tumorigenic KS-like spindle cell, should facilitate systematic identification of KS progenitor cells.
PMCID: PMC3905023  PMID: 24489895
3.  Heavy LIFting: tumor promotion and radioresistance in NPC 
The Journal of Clinical Investigation  2013;123(12):4999-5001.
The epithelial-derived nasopharyngeal carcinoma (NPC) is a rare tumor in most of the world; however, it is common in southern China, northern Africa, and Alaska. NPC is often left undiagnosed and untreated until a late stage of disease. Furthermore, while radiation therapy is effective against this tumor, local recurrence due to radioresistance is an important clinical problem. In this issue, Liu et al. report on their identification of the IL-6 family cytokine leukemia inhibitory factor (LIF) as a serum predictor of local NPC recurrence following radiation therapy. The authors developed this initial finding to discover a role for the LIF/LIFR/mTORC1 signaling axis in NPC tumor cell growth as well as radioresistance.
PMCID: PMC3859398  PMID: 24270417
4.  Immunologic Difference between Hypersensitivity to Mosquito Bite and Hemophagocytic Lymphohistiocytosis Associated with Epstein-Barr Virus Infection 
PLoS ONE  2013;8(10):e76711.
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening, virus-triggered immune disease. Hypersensitivity to mosquito bite (HMB), a presentation of Chronic Active Epstein-Barr Virus infection (CAEBV), may progress to HLH. This study aimed to investigate the immunologic difference between the HMB episodes and the HLH episodes associated with EBV infection. Immunologic changes of immunoglobulins, lymphocyte subsets, cytotoxicity, intracellular perforin and granzyme expressions, EBV virus load and known candidate genes for hereditary HLH were evaluated and compared. In 12 HLH episodes (12 patients) and 14 HMB episodes (4 patients), there were both decreased percentages of CD4+ and CD8+ and increased memory CD4+ and activated (CD2+HLADR+) lymphocytes. In contrast to HMB episodes that had higher IgE levels and EBV virus load predominantly in NK cells, those HLH episodes with virus load predominantly in CD3+ lymphocyte had decreased perforin expression and cytotoxicity that were recovered in the convalescence period. However, there was neither significant difference of total virus load in these episodes nor candidate genetic mutations responsible for hereditary HLH. In conclusion, decreased perforin expression in the HLH episodes with predominant-CD3+ EBV virus load is distinct from those HMB episodes with predominant-NK EBV virus load. Whether the presence of non-elevated memory CD4+ cells or activated lymphocytes (CD2+HLADR+) increases the mortality rate in the HLH episodes remains to be further warranted through larger-scale studies.
PMCID: PMC3800009  PMID: 24204658
5.  A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis 
eLife  2013;2:e00822.
mir-17-92, a potent polycistronic oncomir, encodes six mature miRNAs with complex modes of interactions. In the Eμ-myc Burkitt’s lymphoma model, mir-17-92 exhibits potent oncogenic activity by repressing c-Myc-induced apoptosis, primarily through its miR-19 components. Surprisingly, mir-17-92 also encodes the miR-92 component that negatively regulates its oncogenic cooperation with c-Myc. This miR-92 effect is, at least in part, mediated by its direct repression of Fbw7, which promotes the proteosomal degradation of c-Myc. Thus, overexpressing miR-92 leads to aberrant c-Myc increase, imposing a strong coupling between excessive proliferation and p53-dependent apoptosis. Interestingly, miR-92 antagonizes the oncogenic miR-19 miRNAs; and such functional interaction coordinates proliferation and apoptosis during c-Myc-induced oncogenesis. This miR-19:miR-92 antagonism is disrupted in B-lymphoma cells that favor a greater increase of miR-19 over miR-92. Altogether, we suggest a new paradigm whereby the unique gene structure of a polycistronic oncomir confers an intricate balance between oncogene and tumor suppressor crosstalk.
eLife digest
The role of genes, in very simple terms, is to be transcribed into messenger RNA molecules, which are then translated into strings of amino acids that fold into proteins. Each of these steps is extremely complex, and a wide range of other molecules can speed up, slow down, stop or otherwise disrupt the expression of genes as protein products. Genes can also code for nucleic acids that are not translated into proteins, such as microRNAs. These are small RNA molecules that can reduce the production of proteins by repressing the translation step and/or by partially degrading the messenger RNA molecules.
mir-17-92 is a gene that exemplifies much of this complexity. It codes for six different microRNAs in a single primary transcript, and has been implicated in a number of cancers, including lung cancer, Burkitt’s lymphoma and other forms of lymphomas and leukemia. One of six microRNAs has a longer evolutionary history than the remaining five: mir-92 is found in vertebrates, chordates and invertebrates, whereas the other five are only found in vertebrates. However, it is not known how or why the mir-17-92 gene evolved to code for multiple different microRNAs.
Olive et al. have studied how these mir-17-92 microRNAs functionally interact in mice with Burkitt’s lymphoma, a form of cancer that is associated with a gene called c-Myc being over-activated. Mutations in this gene promote the proliferation of cells, and in cooperation with other genetic lesions, this ultimately leads to cancer. mir-17-92 is implicated in this cancer because it represses the process of programmed cell death (which is induced by the protein c-Myc) that the body employs to stop tumors growing.
Olive et al. found that deleting one of the six microRNAs, miR-92, increased the tendency of the mir-17-92 gene to promote Burkitt’s lymphoma. By repressing an enzyme called Fbw7, miR-92 causes high levels of c-Myc to be produced. While this leads to the uncontrolled proliferation of cells that promotes cancer, it also increases programmed cell death, at least in part, by activating the p53 pathway, a well-known tumor suppression pathway. The experiments also revealed that the action of miR-92 and that of one of the other microRNAs, miR-19, were often opposed to each other. These findings have revealed an unexpected interaction among different components within a single microRNA gene, which acts to maintain an intricate balance between pathways that promote and suppress cancer.
PMCID: PMC3796314  PMID: 24137534
microRNAs; c-Myc; Eμ-myc lymphoma; apoptosis; p53; Mouse
6.  Analysis of Epstein-Barr Virus-Regulated Host Gene Expression Changes through Primary B-Cell Outgrowth Reveals Delayed Kinetics of Latent Membrane Protein 1-Mediated NF-κB Activation 
Journal of Virology  2012;86(20):11096-11106.
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that dramatically reorganizes host gene expression to immortalize primary B cells. In this study, we analyzed EBV-regulated host gene expression changes following primary B-cell infection, both during initial proliferation and through transformation into lymphoblastoid cell lines (LCLs). While most EBV-regulated mRNAs were changed during the transition from resting, uninfected B cells through initial B-cell proliferation, a substantial number of mRNAs changed uniquely from early proliferation through LCL outgrowth. We identified constitutively and dynamically EBV-regulated biological processes, protein classes, and targets of specific transcription factors. Early after infection, genes associated with proliferation, stress responses, and the p53 pathway were highly enriched. However, the transition from early to long-term outgrowth was characterized by genes involved in the inhibition of apoptosis, the actin cytoskeleton, and NF-κB activity. It was previously thought that the major viral protein responsible for NF-κB activation, latent membrane protein 1 (LMP1), is expressed within 2 days after infection. Our data indicate that while this is true, LCL-level LMP1 expression and NF-κB activity are not evident until 3 weeks after primary B-cell infection. Furthermore, heterologous NF-κB activation during the first week after infection increased the transformation efficiency, while early NF-κB inhibition had no effect on transformation. Rather, inhibition of NF-κB was not toxic to EBV-infected cells until LMP1 levels and NF-κB activity were high. These data collectively highlight the dynamic nature of EBV-regulated host gene expression and support the notion that early EBV-infected proliferating B cells have a fundamentally distinct growth and survival phenotype from that of LCLs.
PMCID: PMC3457162  PMID: 22855490
7.  Resveratrol Prevents EBV Transformation and Inhibits the Outgrowth of EBV-Immortalized Human B Cells 
PLoS ONE  2012;7(12):e51306.
Epstein Barr virus-associated lymphoproliferative disease is an increasing complication in patients with immunosuppressive conditions. Although the current therapies for this disorder are effective, they are also associated with significant toxicity. In an attempt to identify newer therapeutic agents, this study investigated the effects of Resveratrol, a naturally occurring polyphenolic compound, on the EBV transformation of human B cells.
Methodology/Principal Findings
This study demonstrates that resveratrol prevents EBV transformation in human B cells. These effects are mediated by specific cytotoxic activities of resveratrol against EBV-infected B cells that are associated with the downregulation of the anti-apoptotic proteins Mcl-1 and survivin. This occurs as a consequence of the inhibition of EBV-induced NFκB and STAT-3 signaling pathways and a resveratrol-induced decrease in the expression of the oncogenic viral product LMP1 in EBV-infected B cells. In addition, resveratrol decreased the expression of miR-155 and miR-34a in EBV-infected B cells, blocked the expression of the anti-apoptotic viral gene BHRF1, and thus interrupted events that are critical for EBV transformation and the survival of EBV-transformed cells.
These results suggest that resveratrol may therefore be a potentially effective therapeutic alternative for preventing EBV-associated lymphoproliferative diseases in immune compromised patients.
PMCID: PMC3519585  PMID: 23251493
8.  The Epstein-Barr Virus (EBV)-Induced Tumor Suppressor MicroRNA MiR-34a Is Growth Promoting in EBV-Infected B Cells 
Journal of Virology  2012;86(12):6889-6898.
Epstein-Barr virus (EBV) infection of primary human B cells drives their indefinite proliferation into lymphoblastoid cell lines (LCLs). B cell immortalization depends on expression of viral latency genes, as well as the regulation of host genes. Given the important role of microRNAs (miRNAs) in regulating fundamental cellular processes, in this study, we assayed changes in host miRNA expression during primary B cell infection by EBV. We observed and validated dynamic changes in several miRNAs from early proliferation through immortalization; oncogenic miRNAs were induced, and tumor suppressor miRNAs were largely repressed. However, one miRNA described as a p53-targeted tumor suppressor, miR-34a, was strongly induced by EBV infection and expressed in many EBV and Kaposi's sarcoma-associated herpesvirus (KSHV)-infected lymphoma cell lines. EBV latent membrane protein 1 (LMP1) was sufficient to induce miR-34a requiring downstream NF-κB activation but independent of functional p53. Furthermore, overexpression of miR-34a was not toxic in several B lymphoma cell lines, and inhibition of miR-34a impaired the growth of EBV-transformed cells. This study identifies a progrowth role for a tumor-suppressive miRNA in oncogenic-virus-mediated transformation, highlighting the importance of studying miRNA function in different cellular contexts.
PMCID: PMC3393554  PMID: 22496226
9.  Human Solid Tumor Xenografts in Immunodeficient Mice Are Vulnerable to Lymphomagenesis Associated with Epstein-Barr Virus 
PLoS ONE  2012;7(6):e39294.
Xenografting primary human solid tumor tissue into immunodeficient mice is a widely used tool in studies of human cancer biology; however, care must be taken to prove that the tumors obtained recapitulate parent tissue. We xenografted primary human hepatocellular carcinoma (HCC) tumor fragments or bulk tumor cell suspensions into immunodeficient mice. We unexpectedly observed that 11 of 21 xenografts generated from 16 independent patient samples resembled lymphoid neoplasms rather than HCC. Immunohistochemistry and flow cytometry analyses revealed that the lymphoid neoplasms were comprised of cells expressing human CD45 and CD19/20, consistent with human B lymphocytes. In situ hybridization was strongly positive for Epstein-Barr virus (EBV) encoded RNA. Genomic analysis revealed unique monoclonal or oligoclonal immunoglobulin heavy chain gene rearrangements in each B-cell neoplasm. These data demonstrate that the lymphoid neoplasms were EBV-associated human B-cell lymphomas. Analogous to EBV-associated lymphoproliferative disorders in immunocompromised humans, the human lymphomas in these HCC xenografts likely developed from reactivation of latent EBV in intratumoral passenger B lymphocytes following their xenotransplantation into immunodeficient recipient mice. Given the high prevalence of latent EBV infection in humans and the universal presence of B lymphocytes in solid tumors, this potentially confounding process represents an important pitfall of human solid tumor xenografting. This phenomenon can be recognized and avoided by routine phenotyping of primary tumors and xenografts with human leukocyte markers, and provides a compelling biological rationale for exclusion of these cells from human solid tumor xenotransplantation assays.
PMCID: PMC3377749  PMID: 22723990
10.  At a crossroads: human DNA tumor viruses and the host DNA damage response 
Future virology  2011;6(7):813-830.
Human DNA tumor viruses induce host cell proliferation in order to establish the necessary cellular milieu to replicate viral DNA. The consequence of such viral-programmed induction of proliferation coupled with the introduction of foreign replicating DNA structures makes these viruses particularly sensitive to the host DNA damage response machinery. In fact, sensors of DNA damage are often activated and modulated by DNA tumor viruses in both latent and lytic infection. This article focuses on the role of the DNA damage response during the life cycle of human DNA tumor viruses, with a particular emphasis on recent advances in our understanding of the role of the DNA damage response in EBV, Kaposi’s sarcoma-associated herpesvirus and human papillomavirus infection.
PMCID: PMC3171950  PMID: 21927617
DNA tumor virus; EBV; Epstein–Barr virus; genomic instability; HBV; hepatitis B virus; HPV; human papillomavirus; human polyomavirus; Kaposi’s sarcoma-associated herpesvirus; KSHV; oncogenic; stress; tumor suppression
11.  Dasatinib as a Bone-Modifying Agent: Anabolic and Anti-Resorptive Effects 
PLoS ONE  2012;7(4):e34914.
Bone loss, in malignant or non-malignant diseases, is caused by increased osteoclast resorption and/or reduced osteoblast bone formation, and is commonly associated with skeletal complications. Thus, there is a need to identify new agents capable of influencing bone remodeling. We aimed to further pre-clinically evaluate the effects of dasatinib (BMS-354825), a multitargeted tyrosine kinase inhibitor, on osteoblast and osteoclast differentiation and function.
For studies on osteoblasts, primary human bone marrow mensenchymal stem cells (hMSCs) together with the hMSC-TERT and the MG-63 cell lines were employed. Osteoclasts were generated from peripheral blood mononuclear cells (PBMC) of healthy volunteers. Skeletally-immature CD1 mice were used in the in vivo model.
Dasatinib inhibited the platelet derived growth factor receptor-β (PDGFR-β), c-Src and c-Kit phosphorylation in hMSC-TERT and MG-63 cell lines, which was associated with decreased cell proliferation and activation of canonical Wnt signaling. Treatment of MSCs from healthy donors, but also from multiple myeloma patients with low doses of dasatinib (2–5 nM), promoted its osteogenic differentiation and matrix mineralization. The bone anabolic effect of dasatinib was also observed in vivo by targeting endogenous osteoprogenitors, as assessed by elevated serum levels of bone formation markers, and increased trabecular microarchitecture and number of osteoblast-like cells. By in vitro exposure of hemopoietic progenitors to a similar range of dasatinib concentrations (1–2 nM), novel biological sequelae relative to inhibition of osteoclast formation and resorptive function were identified, including F-actin ring disruption, reduced levels of c-Fos and of nuclear factor of activated T cells 1 (NFATc1) in the nucleus, together with lowered cathepsin K, αVβ3 integrin and CCR1 expression.
Low dasatinib concentrations show convergent bone anabolic and reduced bone resorption effects, which suggests its potential use for the treatment of bone diseases such as osteoporosis, osteolytic bone metastasis and myeloma bone disease.
PMCID: PMC3335111  PMID: 22539950
17.  In Vitro Murine Leukemia Retroviral Integration and Structure Fluctuation of Target DNA 
PLoS ONE  2012;7(2):e31533.
Integration of the retroviral genome into host DNA is a critical step in the life cycle of a retrovirus. Although assays for in vitro integration have been developed, the actual DNA sequences targeted by murine leukemia retrovirus (MLV) during in vitro reproduction are unknown. While previous studies used artificial target sequences, we developed an assay using target DNA sequences from common MLV integration sites in Stat5a and c-myc in the genome of murine lymphomas and successfully integrated MLV into the target DNA in vitro. We calculated the free energy change during folding of the target sequence DNA and found a close correlation between the calculated free energy change and the number of integrations. Indeed, the integrations closely correlated with fluctuation of the structure of the target DNA segment. These data suggest that the fluctuation may generate a DNA structure favorable for in vitro integration into the target DNA. The approach described here can provide data on the biochemical properties of the integration reaction to which the target DNA structure may contribute.
PMCID: PMC3279379  PMID: 22348097
18.  The Viral and Cellular MicroRNA Targetome in Lymphoblastoid Cell Lines 
PLoS Pathogens  2012;8(1):e1002484.
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus linked to a number of B cell cancers and lymphoproliferative disorders. During latent infection, EBV expresses 25 viral pre-microRNAs (miRNAs) and induces the expression of specific host miRNAs, such as miR-155 and miR-21, which potentially play a role in viral oncogenesis. To date, only a limited number of EBV miRNA targets have been identified; thus, the role of EBV miRNAs in viral pathogenesis and/or lymphomagenesis is not well defined. Here, we used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) combined with deep sequencing and computational analysis to comprehensively examine the viral and cellular miRNA targetome in EBV strain B95-8-infected lymphoblastoid cell lines (LCLs). We identified 7,827 miRNA-interaction sites in 3,492 cellular 3′UTRs. 531 of these sites contained seed matches to viral miRNAs. 24 PAR-CLIP-identified miRNA:3′UTR interactions were confirmed by reporter assays. Our results reveal that EBV miRNAs predominantly target cellular transcripts during latent infection, thereby manipulating the host environment. Furthermore, targets of EBV miRNAs are involved in multiple cellular processes that are directly relevant to viral infection, including innate immunity, cell survival, and cell proliferation. Finally, we present evidence that myc-regulated host miRNAs from the miR-17/92 cluster can regulate latent viral gene expression. This comprehensive survey of the miRNA targetome in EBV-infected B cells represents a key step towards defining the functions of EBV-encoded miRNAs, and potentially, identifying novel therapeutic targets for EBV-associated malignancies.
Author Summary
Over 90% of adults worldwide are infected with Epstein-Barr virus (EBV). While EBV infection is normally controlled by a healthy immune system, in immuno-compromised individuals, EBV can cause serious disease and/or cancer. During infection, EBV expresses viral microRNAs (miRNAs) and induces the expression of specific cellular miRNAs. In general, miRNAs inhibit target gene expression by binding to complementary regions on target messenger RNAs (mRNA). While cellular miRNAs regulate important biological processes such as cell growth and differentiation, and many miRNAs have been linked to cancer progression, the functions of EBV miRNAs are largely unknown. To identify targets of EBV miRNAs and cellular miRNAs in EBV-infected cells, we used a high-throughput method based on next-generation sequencing technology to give a global picture of miRNA-regulated gene expression. Our analysis showed that over 500 mRNAs can be regulated by viral miRNAs, many of which are directly relevant to EBV infection. This study provides a comprehensive survey of viral and cellular miRNA targets in B cells, which is a positive step towards identifying novel therapeutic targets for EBV-associated cancers.
PMCID: PMC3266933  PMID: 22291592
19.  An ATM/Chk2-mediated DNA damage responsive signaling pathway suppresses Epstein-Barr virus transformation of primary human B cells 
Cell host & microbe  2010;8(6):510-522.
Epstein-Barr virus (EBV), an oncogenic herpesvirus that causes human malignancies, infects and immortalizes primary human B cells in vitro into indefinitely proliferating lymphoblastoid cell lines, which represent a model for EBV-induced tumorigenesis. The immortalization efficiency is very low suggesting that an innate tumor suppressor mechanism is operative. We identify the DNA damage response (DDR) as a major component of the underlying tumor suppressor mechanism. EBV-induced DDR activation was not due to lytic viral replication nor did the DDR marks co-localize with latent episomes. Rather, a transient period of EBV-induced hyper-proliferation correlated with DDR activation. Inhibition of the DDR kinases ATM and Chk2 markedly increased transformation efficiency of primary B cells. Further, the viral latent oncoproteins EBNA3C was required to attenuate the EBV-induced DNA damage response We propose that heightened oncogenic activity in early cell divisions activates a growth-suppressive DDR which is attenuated by viral latency products to induce cell immortalization.
PMCID: PMC3049316  PMID: 21147465
20.  Upregulation of the Cell-Cycle Regulator RGC-32 in Epstein-Barr Virus-Immortalized Cells 
PLoS ONE  2011;6(12):e28638.
Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator.
PMCID: PMC3232240  PMID: 22163048
21.  Fitness Conferred by BCR-ABL Kinase Domain Mutations Determines the Risk of Pre-Existing Resistance in Chronic Myeloid Leukemia 
PLoS ONE  2011;6(11):e27682.
Chronic myeloid leukemia (CML) is the first human malignancy to be successfully treated with a small molecule inhibitor, imatinib, targeting a mutant oncoprotein (BCR-ABL). Despite its successes, acquired resistance to imatinib leads to reduced drug efficacy and frequent progression of disease. Understanding the characteristics of pre-existing resistant cells is important for evaluating the benefits of first-line combination therapy with second generation inhibitors. However, due to limitations of assay sensitivity, determining the existence and characteristics of resistant cell clones at the start of therapy is difficult. Here we combined a mathematical modeling approach using branching processes with experimental data on the fitness changes (i.e., changes in net reproductive rate) conferred by BCR-ABL kinase domain mutations to investigate the likelihood, composition, and diversity of pre-existing resistance. Furthermore, we studied the impact of these factors on the response to tyrosine kinase inhibitors. Our approach predicts that in most patients, there is at most one resistant clone present at the time of diagnosis of their disease. Interestingly, patients are no more likely to harbor the most aggressive, pan-resistant T315I mutation than any other resistance mutation; however, T315I cells on average establish larger-sized clones at the time of diagnosis. We established that for patients diagnosed late, the relative benefit of combination therapy over monotherapy with imatinib is significant, while this benefit is modest for patients with a typically early diagnosis time. These findings, after pre-clinical validation, will have implications for the clinical management of CML: we recommend that patients with advanced-phase disease be treated with combination therapy with at least two tyrosine kinase inhibitors.
PMCID: PMC3225363  PMID: 22140458
22.  Structure of Herpes Simplex Virus Glycoprotein D Bound to the Human Receptor Nectin-1 
PLoS Pathogens  2011;7(9):e1002277.
Binding of herpes simplex virus (HSV) glycoprotein D (gD) to a cell surface receptor is required to trigger membrane fusion during entry into host cells. Nectin-1 is a cell adhesion molecule and the main HSV receptor in neurons and epithelial cells. We report the structure of gD bound to nectin-1 determined by x-ray crystallography to 4.0 Å resolution. The structure reveals that the nectin-1 binding site on gD differs from the binding site of the HVEM receptor. A surface on the first Ig-domain of nectin-1, which mediates homophilic interactions of Ig-like cell adhesion molecules, buries an area composed by residues from both the gD N- and C-terminal extensions. Phenylalanine 129, at the tip of the loop connecting β-strands F and G of nectin-1, protrudes into a groove on gD, which is otherwise occupied by C-terminal residues in the unliganded gD and by N-terminal residues in the gD/HVEM complex. Notably, mutation of Phe129 to alanine prevents nectin-1 binding to gD and HSV entry. Together these data are consistent with previous studies showing that gD disrupts the normal nectin-1 homophilic interactions. Furthermore, the structure of the complex supports a model in which gD-receptor binding triggers HSV entry through receptor-mediated displacement of the gD C-terminal region.
PMCID: PMC3182920  PMID: 21980294
23.  Small Compound 6-O-Angeloylplenolin Induces Mitotic Arrest and Exhibits Therapeutic Potentials in Multiple Myeloma 
PLoS ONE  2011;6(7):e21930.
Multiple myeloma (MM) is a disease of cell cycle dysregulation while cell cycle modulation can be a target for MM therapy. In this study we investigated the effects and mechanisms of action of a sesquiterpene lactone 6-O-angeloylplenolin (6-OAP) on MM cells.
Methodology/Principal Findings
MM cells were exposed to 6-OAP and cell cycle distribution were analyzed. The role for cyclin B1 to play in 6-OAP-caused mitotic arrest was tested by specific siRNA analyses in U266 cells. MM.1S cells co-incubated with interleukin-6 (IL-6), insulin-like growth factor-I (IGF-I), or bone marrow stromal cells (BMSCs) were treated with 6-OAP. The effects of 6-OAP plus other drugs on MM.1S cells were evaluated. The in vivo therapeutic efficacy and pharmacokinetic features of 6-OAP were tested in nude mice bearing U266 cells and Sprague-Dawley rats, respectively. We found that 6-OAP suppressed the proliferation of dexamethasone-sensitive and dexamethasone-resistant cell lines and primary CD138+ MM cells. 6-OAP caused mitotic arrest, accompanied by activation of spindle assembly checkpoint and blockage of ubiquitiniation and subsequent proteasomal degradation of cyclin B1. Combined use of 6-OAP and bortezomib induced potentiated cytotoxicity with inactivation of ERK1/2 and activation of JNK1/2 and Casp-8/-3. 6-OAP overcame the protective effects of IL-6 and IGF-I on MM cells through inhibition of Jak2/Stat3 and Akt, respectively. 6-OAP inhibited BMSCs-facilitated MM cell expansion and TNF-α-induced NF-κB signal. Moreover, 6-OAP exhibited potent anti-MM activity in nude mice and favorable pharmacokinetics in rats.
These results indicate that 6-OAP is a new cell cycle inhibitor which shows therapeutic potentials for MM.
PMCID: PMC3130785  PMID: 21755010
24.  Virally Induced Cellular MicroRNA miR-155 Plays a Key Role in B-Cell Immortalization by Epstein-Barr Virus▿  
Journal of Virology  2010;84(22):11670-11678.
Infection of resting primary human B cells by Epstein-Barr virus (EBV) results in their transformation into indefinitely proliferating lymphoblastoid cell lines (LCLs). LCL formation serves as a model for lymphomagenesis, and LCLs are phenotypically similar to EBV-positive diffuse large B-cell lymphomas (DLBCLs), which represent a common AIDS-associated malignancy. B-cell infection by EBV induces the expression of several cellular microRNAs (miRNAs), most notably miR-155, which is overexpressed in many tumors and can induce B-cell lymphomas when overexpressed in animals. Here, we demonstrate that miR-155 is the most highly expressed miRNA in LCLs and that the selective inhibition of miR-155 function specifically inhibits the growth of both LCLs and the DLBCL cell line IBL-1. Cells lacking miR-155 are inefficient in progressing through S phase and spontaneously undergo apoptosis. In contrast, three other B-cell lymphoma lines, including two EBV-positive Burkitt's lymphoma cell lines, grew normally in the absence of miR-155 function. These data identify the induction of cellular miR-155 expression by EBV as critical for the growth of both laboratory-generated LCLs and naturally occurring DLBCLs and suggest that targeted inhibition of miR-155 function could represent a novel approach to the treatment of DLBCL in vivo.
PMCID: PMC2977875  PMID: 20844043
25.  Efficient Cellular Release of Rift Valley Fever Virus Requires Genomic RNA 
PLoS ONE  2011;6(3):e18070.
The Rift Valley fever virus is responsible for periodic, explosive epizootics throughout sub-Saharan Africa. The development of therapeutics targeting this virus is difficult due to a limited understanding of the viral replicative cycle. Utilizing a virus-like particle system, we have established roles for each of the viral structural components in assembly, release, and virus infectivity. The envelope glycoprotein, Gn, was discovered to be necessary and sufficient for packaging of the genome, nucleocapsid protein and the RNA-dependent RNA polymerase into virus particles. Additionally, packaging of the genome was found to be necessary for the efficient release of particles, revealing a novel mechanism for the efficient generation of infectious virus. Our results identify possible conserved targets for development of anti-phlebovirus therapies.
PMCID: PMC3061922  PMID: 21445316

Results 1-25 (34)