PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (49)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Ten recommendations for software engineering in research 
GigaScience  2014;3(1):31.
Research in the context of data-driven science requires a backbone of well-written software, but scientific researchers are typically not trained at length in software engineering, the principles for creating better software products. To address this gap, in particular for young researchers new to programming, we give ten recommendations to ensure the usability, sustainability and practicality of research software.
doi:10.1186/2047-217X-3-31
PMCID: PMC4326482
Software engineering; Best practices
2.  The Potential Utility of Predicted One Bond Carbon-Proton Coupling Constants in the Structure Elucidation of Small Organic Molecules by NMR Spectroscopy 
PLoS ONE  2014;9(11):e111576.
NMR spectroscopy is the most popular technique used for structure elucidation of small organic molecules in solution, but incorrect structures are regularly reported. One-bond proton-carbon J-couplings provide additional information about chemical structure because they are determined by different features of molecular structure than are proton and carbon chemical shifts. However, these couplings are not routinely used to validate proposed structures because few software tools exist to predict them. This study assesses the accuracy of Density Functional Theory for predicting them using 396 published experimental observations from a diverse range of small organic molecules. With the B3LYP functional and the TZVP basis set, Density Functional Theory calculations using the open-source software package NWChem can predict one-bond CH J-couplings with good accuracy for most classes of small organic molecule. The root-mean-square deviation after correction is 1.5 Hz for most sp3 CH pairs and 1.9 Hz for sp2 pairs; larger errors are observed for sp3 pairs with multiple electronegative substituents and for sp pairs. These results suggest that prediction of one-bond CH J-couplings by Density Functional Theory is sufficiently accurate for structure validation. This will be of particular use in strained ring systems and heterocycles which have characteristic couplings and which pose challenges for structure elucidation.
doi:10.1371/journal.pone.0111576
PMCID: PMC4218771  PMID: 25365289
3.  A molecular fragment cheminformatics roadmap for mesoscopic simulation 
Background
Mesoscopic simulation studies the structure, dynamics and properties of large molecular ensembles with millions of atoms: Its basic interacting units (beads) are no longer the nuclei and electrons of quantum chemical ab-initio calculations or the atom types of molecular mechanics but molecular fragments, molecules or even larger molecular entities. For its simulation setup and output a mesoscopic simulation kernel software uses abstract matrix (array) representations for bead topology and connectivity. Therefore a pure kernel-based mesoscopic simulation task is a tedious, time-consuming and error-prone venture that limits its practical use and application. A consequent cheminformatics approach tackles these problems and provides solutions for a considerably enhanced accessibility. This study aims at outlining a complete cheminformatics roadmap that frames a mesoscopic Molecular Fragment Dynamics (MFD) simulation kernel to allow its efficient use and practical application.
Results
The molecular fragment cheminformatics roadmap consists of four consecutive building blocks: An adequate fragment structure representation (1), defined operations on these fragment structures (2), the description of compartments with defined compositions and structural alignments (3), and the graphical setup and analysis of a whole simulation box (4). The basis of the cheminformatics approach (i.e. building block 1) is a SMILES-like line notation (denoted fSMILES) with connected molecular fragments to represent a molecular structure. The fSMILES notation and the following concepts and methods for building blocks 2-4 are outlined with examples and practical usage scenarios. It is shown that the requirements of the roadmap may be partly covered by already existing open-source cheminformatics software.
Conclusions
Mesoscopic simulation techniques like MFD may be considerably alleviated and broadened for practical use with a consequent cheminformatics layer that successfully tackles its setup subtleties and conceptual usage hurdles. Molecular Fragment Cheminformatics may be regarded as a crucial accelerator to propagate MFD and similar mesoscopic simulation techniques in the molecular sciences.
Graphical abstractA molecular fragment cheminformatics roadmap for mesoscopic simulation.
doi:10.1186/s13321-014-0045-3
PMCID: PMC4212157  PMID: 25383098
Dissipative particle dynamics; Computer simulation; Molecular fragmentation; fSmiles; Fragment smiles; Molecular fragment cheminformatics; Molecular fragment dynamics; Mesoscopic simulation; Peptide representation; Protein representation
4.  Building blocks for automated elucidation of metabolites: natural product-likeness for candidate ranking 
BMC Bioinformatics  2014;15:234.
Background
In metabolomics experiments, spectral fingerprints of metabolites with no known structural identity are detected routinely. Computer-assisted structure elucidation (CASE) has been used to determine the structural identities of unknown compounds. It is generally accepted that a single 1D NMR spectrum or mass spectrum is usually not sufficient to establish the identity of a hitherto unknown compound. When a suite of spectra from 1D and 2D NMR experiments supplemented with a molecular formula are available, the successful elucidation of the chemical structure for candidates with up to 30 heavy atoms has been reported previously by one of the authors. In high-throughput metabolomics, usually 1D NMR or mass spectrometry experiments alone are conducted for rapid analysis of samples. This method subsequently requires that the spectral patterns are analyzed automatically to quickly identify known and unknown structures. In this study, we investigated whether additional existing knowledge, such as the fact that the unknown compound is a natural product, can be used to improve the ranking of the correct structure in the result list after the structure elucidation process.
Results
To identify unknowns using as little spectroscopic information as possible, we implemented an evolutionary algorithm-based CASE mechanism to elucidate candidates in a fully automated fashion, with input of the molecular formula and 13C NMR spectrum of the isolated compound. We also tested how filters like natural product-likeness, a measure that calculates the similarity of the compounds to known natural product space, might enhance the performance and quality of the structure elucidation. The evolutionary algorithm is implemented within the SENECA package for CASE reported previously, and is available for free download under artistic license at http://sourceforge.net/projects/seneca/. The natural product-likeness calculator is incorporated as a plugin within SENECA and is available as a GUI client and command-line executable. Significant improvements in candidate ranking were demonstrated for 41 small test molecules when the CASE system was supplemented by a natural product-likeness filter.
Conclusions
In spectroscopically underdetermined structure elucidation problems, natural product-likeness can contribute to a better ranking of the correct structure in the results list.
doi:10.1186/1471-2105-15-234
PMCID: PMC4089557  PMID: 24996690
Computer-assisted structure elucidation; Metabolomics; Natural product-likeness
5.  The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience* 
Molecular & Cellular Proteomics : MCP  2014;13(10):2765-2775.
The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R.
We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online.
doi:10.1074/mcp.O113.036681
PMCID: PMC4189001  PMID: 24980485
6.  Genome-Wide Association Study of Metabolic Traits Reveals Novel Gene-Metabolite-Disease Links 
PLoS Genetics  2014;10(2):e1004132.
Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we report results from a metabolome- and genome-wide association study on 1H-NMR urine metabolic profiles. The study was conducted within an untargeted approach, employing a novel method for compound identification. From our discovery cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant (P<5×10−8) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features. Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two SNPs with NMR spectral signatures pointing to fucose (rs492602, P = 6.9×10−44) and lysine (rs8101881, P = 1.2×10−33), respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has previously been associated with Crohn's disease. This implicates fucose as a potential prognostic disease marker, for which there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of which have been linked to severe kidney damage. The replication of previous associations and our new discoveries demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers.
Author Summary
The concentrations of small molecules known as metabolites, are subject to tight regulation in all organisms. Collectively, the metabolite concentrations make up the metabolome, which differs amongst individuals as a function of their environment and genetic makeup. In our study, we have further developed an untargeted approach to identify genetic factors affecting human metabolism. In this approach, we first identify all genetic variants that correlate with any of the measured metabolome features in a large set of individuals. For these variants, we then compute a profile of significance for association with all features, generating a signature that facilitates the expert or computational identification of the metabolite whose concentration is most likely affected by the genetic variant at hand. Our study replicated many of the previously reported genetically driven variations in human metabolism and revealed two new striking examples of genetic variations with a sizeable effect on the urine metabolome. Interestingly, in these two gene-metabolite pairs both the gene and the affected metabolite are related to human diseases – Crohn's disease in the first case, and kidney disease in the second. This highlights the connection between genetic predispositions, affected metabolites, and human health.
doi:10.1371/journal.pgen.1004132
PMCID: PMC3930510  PMID: 24586186
7.  Efficient ring perception for the Chemistry Development Kit 
Background
The Chemistry Development Kit (CDK) is an open source Java library for manipulating and processing chemical information. A key aspect in handling chemical structures is the determination of the chemical rings. The rings of a structure are used areas including descriptors, stereochemistry, similarity, screening and atom typing. The CDK includes multiple algorithms for determining the rings of a structure on demand. Non-unique descriptions of rings were often used due to the slower performance of the unique alternatives.
Results
Efficient algorithms for handling chemical ring perception have been implemented and optimised in the CDK. The algorithms provide much faster computation of new and existing types of rings. Several optimisation and implementation considerations are discussed which improve real case usage. The performance is measured on several publicly available data sets and in several cases the new implementations were found to be more than an order of magnitude faster.
Conclusions
Algorithmic improvements allow handling of much larger datasets in reasonable time. Faster computation allows more appropriate rings to be utilised in procedures such as aromaticity. Several areas that require ring perception have also seen a noticeable improvement. The time taken to compute the unique rings is now comparable allowing a correct usage throughout the toolkit. All source code is open source and freely available.
doi:10.1186/1758-2946-6-3
PMCID: PMC3922685  PMID: 24479757
Rings; Cycles; CDK
8.  The role of reporting standards for metabolite annotation and identification in metabolomic studies 
GigaScience  2013;2:13.
The application of reporting standards in metabolomics allow data from different laboratories to be shared, integrated and interpreted. Although minimum reporting standards related to metabolite identification were published in 2007, it is clear that significant efforts are required to ensure their continuous update and appropriate use by the metabolomics community. These include their use in metabolomics data submission (e.g., MetaboLights) and as a requirement for publication in peer-reviewed journals (e.g., Metabolomics). The Data Standards and Metabolite Identification Task Groups of the international Metabolomics Society are actively working to develop and promote these standards and educate the community on their use.
doi:10.1186/2047-217X-2-13
PMCID: PMC3853013  PMID: 24131531
9.  OntoQuery: easy-to-use web-based OWL querying 
Bioinformatics  2013;29(22):2955-2957.
Summary: The Web Ontology Language (OWL) provides a sophisticated language for building complex domain ontologies and is widely used in bio-ontologies such as the Gene Ontology. The Protégé-OWL ontology editing tool provides a query facility that allows composition and execution of queries with the human-readable Manchester OWL syntax, with syntax checking and entity label lookup. No equivalent query facility such as the Protégé Description Logics (DL) query yet exists in web form. However, many users interact with bio-ontologies such as chemical entities of biological interest and the Gene Ontology using their online Web sites, within which DL-based querying functionality is not available. To address this gap, we introduce the OntoQuery web-based query utility.
Availability and implementation: The source code for this implementation together with instructions for installation is available at http://github.com/IlincaTudose/OntoQuery. OntoQuery software is fully compatible with all OWL-based ontologies and is available for download (CC-0 license). The ChEBI installation, ChEBI OntoQuery, is available at http://www.ebi.ac.uk/chebi/tools/ontoquery.
Contact: hastings@ebi.ac.uk
doi:10.1093/bioinformatics/btt514
PMCID: PMC3810857  PMID: 24008420
10.  KNIME-CDK: Workflow-driven cheminformatics 
BMC Bioinformatics  2013;14:257.
Background
Cheminformaticians have to routinely process and analyse libraries of small molecules. Among other things, that includes the standardization of molecules, calculation of various descriptors, visualisation of molecular structures, and downstream analysis. For this purpose, scientific workflow platforms such as the Konstanz Information Miner can be used if provided with the right plug-in. A workflow-based cheminformatics tool provides the advantage of ease-of-use and interoperability between complementary cheminformatics packages within the same framework, hence facilitating the analysis process.
Results
KNIME-CDK comprises functions for molecule conversion to/from common formats, generation of signatures, fingerprints, and molecular properties. It is based on the Chemistry Development Toolkit and uses the Chemical Markup Language for persistence. A comparison with the cheminformatics plug-in RDKit shows that KNIME-CDK supports a similar range of chemical classes and adds new functionality to the framework. We describe the design and integration of the plug-in, and demonstrate the usage of the nodes on ChEBI, a library of small molecules of biological interest.
Conclusions
KNIME-CDK is an open-source plug-in for the Konstanz Information Miner, a free workflow platform. KNIME-CDK is build on top of the open-source Chemistry Development Toolkit and allows for efficient cross-vendor structural cheminformatics. Its ease-of-use and modularity enables researchers to automate routine tasks and data analysis, bringing complimentary cheminformatics functionality to the workflow environment.
doi:10.1186/1471-2105-14-257
PMCID: PMC3765822  PMID: 24103053
Cheminformatics; Workflows; Data integration; Software library
11.  Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology 
BMC Genomics  2013;14:513.
Background
The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI.
Results
We have examined and integrated the ChEBI structural hierarchy into the GO resource through computationally-assisted manual curation of both GO and ChEBI. Our work has resulted in the creation of computable definitions of GO terms that contain fully defined semantic relationships to corresponding chemical terms in ChEBI.
Conclusions
The set of logical definitions using both the GO and ChEBI has already been used to automate aspects of GO development and has the potential to allow the integration of data across the domains of biology and chemistry. These logical definitions are available as an extended version of the ontology from http://purl.obolibrary.org/obo/go/extensions/go-plus.owl.
doi:10.1186/1471-2164-14-513
PMCID: PMC3733925  PMID: 23895341
12.  Metingear: a development environment for annotating genome-scale metabolic models 
Bioinformatics  2013;29(17):2213-2215.
Summary: Genome-scale metabolic models often lack annotations that would allow them to be used for further analysis. Previous efforts have focused on associating metabolites in the model with a cross reference, but this can be problematic if the reference is not freely available, multiple resources are used or the metabolite is added from a literature review. Associating each metabolite with chemical structure provides unambiguous identification of the components and a more detailed view of the metabolism. We have developed an open-source desktop application that simplifies the process of adding database cross references and chemical structures to genome-scale metabolic models. Annotated models can be exported to the Systems Biology Markup Language open interchange format.
Availability: Source code, binaries, documentation and tutorials are freely available at http://johnmay.github.com/metingear. The application is implemented in Java with bundles available for MS Windows and Macintosh OS X.
Contact: johnmay@ebi.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btt342
PMCID: PMC3740624  PMID: 23766418
14.  Dissemination of metabolomics results: role of MetaboLights and COSMOS 
GigaScience  2013;2:8.
With ever-increasing amounts of metabolomics data produced each year, there is an even greater need to disseminate data and knowledge produced in a standard and reproducible way. To assist with this a general purpose, open source metabolomics repository, MetaboLights, was launched in 2012. To promote a community standard, initially culminated as metabolomics standards initiative (MSI), COordination of Standards in MetabOlomicS (COSMOS) was introduced. COSMOS aims to link life science e-infrastructures within the worldwide metabolomics community as well as develop and maintain open source exchange formats for raw and processed data, ensuring better flow of metabolomics information.
doi:10.1186/2047-217X-2-8
PMCID: PMC3658998  PMID: 23683662
Metabolomics; MetaboLights; Database; Repository; Data sharing; Standard; MSI; ISA-Tab; Curation; COSMOS
15.  LipidHome: A Database of Theoretical Lipids Optimized for High Throughput Mass Spectrometry Lipidomics 
PLoS ONE  2013;8(5):e61951.
Protein sequence databases are the pillar upon which modern proteomics is supported, representing a stable reference space of predicted and validated proteins. One example of such resources is UniProt, enriched with both expertly curated and automatic annotations. Taken largely for granted, similar mature resources such as UniProt are not available yet in some other “omics” fields, lipidomics being one of them. While having a seasoned community of wet lab scientists, lipidomics lies significantly behind proteomics in the adoption of data standards and other core bioinformatics concepts. This work aims to reduce the gap by developing an equivalent resource to UniProt called ‘LipidHome’, providing theoretically generated lipid molecules and useful metadata. Using the ‘FASTLipid’ Java library, a database was populated with theoretical lipids, generated from a set of community agreed upon chemical bounds. In parallel, a web application was developed to present the information and provide computational access via a web service. Designed specifically to accommodate high throughput mass spectrometry based approaches, lipids are organised into a hierarchy that reflects the variety in the structural resolution of lipid identifications. Additionally, cross-references to other lipid related resources and papers that cite specific lipids were used to annotate lipid records. The web application encompasses a browser for viewing lipid records and a ‘tools’ section where an MS1 search engine is currently implemented. LipidHome can be accessed at http://www.ebi.ac.uk/apweiler-srv/lipidhome.
doi:10.1371/journal.pone.0061951
PMCID: PMC3646891  PMID: 23667450
16.  The MetaboLights repository: curation challenges in metabolomics 
MetaboLights is the first general-purpose open-access curated repository for metabolomic studies, their raw experimental data and associated metadata, maintained by one of the major open-access data providers in molecular biology. Increases in the number of depositions, number of samples per study and the file size of data submitted to MetaboLights present a challenge for the objective of ensuring high-quality and standardized data in the context of diverse metabolomic workflows and data representations. Here, we describe the MetaboLights curation pipeline, its challenges and its practical application in quality control of complex data depositions.
Database URL: http://www.ebi.ac.uk/metabolights
doi:10.1093/database/bat029
PMCID: PMC3638156  PMID: 23630246
18.  The Enzyme Portal: a case study in applying user-centred design methods in bioinformatics 
BMC Bioinformatics  2013;14:103.
User-centred design (UCD) is a type of user interface design in which the needs and desires of users are taken into account at each stage of the design process for a service or product; often for software applications and websites. Its goal is to facilitate the design of software that is both useful and easy to use. To achieve this, you must characterise users’ requirements, design suitable interactions to meet their needs, and test your designs using prototypes and real life scenarios.
For bioinformatics, there is little practical information available regarding how to carry out UCD in practice. To address this we describe a complete, multi-stage UCD process used for creating a new bioinformatics resource for integrating enzyme information, called the Enzyme Portal (http://www.ebi.ac.uk/enzymeportal). This freely-available service mines and displays data about proteins with enzymatic activity from public repositories via a single search, and includes biochemical reactions, biological pathways, small molecule chemistry, disease information, 3D protein structures and relevant scientific literature.
We employed several UCD techniques, including: persona development, interviews, ‘canvas sort’ card sorting, user workflows, usability testing and others. Our hope is that this case study will motivate the reader to apply similar UCD approaches to their own software design for bioinformatics. Indeed, we found the benefits included more effective decision-making for design ideas and technologies; enhanced team-working and communication; cost effectiveness; and ultimately a service that more closely meets the needs of our target audience.
doi:10.1186/1471-2105-14-103
PMCID: PMC3623738  PMID: 23514033
3D protein structure; Biological pathways; Card sorting; Design; Enzyme; Enzyme portal; Implementation; Personae; Prototyping; User-centered design (USA spelling); User-centred design; User experience; User profiles; User requirements; Usability testing
19.  The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013 
Nucleic Acids Research  2012;41(Database issue):D456-D463.
ChEBI (http://www.ebi.ac.uk/chebi) is a database and ontology of chemical entities of biological interest. Over the past few years, ChEBI has continued to grow steadily in content, and has added several new features. In addition to incorporating all user-requested compounds, our annotation efforts have emphasized immunology, natural products and metabolites in many species. All database entries are now ‘is_a’ classified within the ontology, meaning that all of the chemicals are available to semantic reasoning tools that harness the classification hierarchy. We have completely aligned the ontology with the Open Biomedical Ontologies (OBO) Foundry-recommended upper level Basic Formal Ontology. Furthermore, we have aligned our chemical classification with the classification of chemical-involving processes in the Gene Ontology (GO), and as a result of this effort, the majority of chemical-involving processes in GO are now defined in terms of the ChEBI entities that participate in them. This effort necessitated incorporating many additional biologically relevant compounds. We have incorporated additional data types including reference citations, and the species and component for metabolites. Finally, our website and web services have had several enhancements, most notably the provision of a dynamic new interactive graph-based ontology visualization.
doi:10.1093/nar/gks1146
PMCID: PMC3531142  PMID: 23180789
20.  The EBI enzyme portal 
Nucleic Acids Research  2012;41(Database issue):D773-D780.
The availability of comprehensive information about enzymes plays an important role in answering questions relevant to interdisciplinary fields such as biochemistry, enzymology, biofuels, bioengineering and drug discovery. At the EMBL European Bioinformatics Institute, we have developed an enzyme portal (http://www.ebi.ac.uk/enzymeportal) to provide this wealth of information on enzymes from multiple in-house resources addressing particular data classes: protein sequence and structure, reactions, pathways and small molecules. The fact that these data reside in separate databases makes information discovery cumbersome. The main goal of the portal is to simplify this process for end users.
doi:10.1093/nar/gks1112
PMCID: PMC3531056  PMID: 23175605
21.  MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data 
Nucleic Acids Research  2012;41(Database issue):D781-D786.
MetaboLights (http://www.ebi.ac.uk/metabolights) is the first general-purpose, open-access repository for metabolomics studies, their raw experimental data and associated metadata, maintained by one of the major open-access data providers in molecular biology. Metabolomic profiling is an important tool for research into biological functioning and into the systemic perturbations caused by diseases, diet and the environment. The effectiveness of such methods depends on the availability of public open data across a broad range of experimental methods and conditions. The MetaboLights repository, powered by the open source ISA framework, is cross-species and cross-technique. It will cover metabolite structures and their reference spectra as well as their biological roles, locations, concentrations and raw data from metabolic experiments. Studies automatically receive a stable unique accession number that can be used as a publication reference (e.g. MTBLS1). At present, the repository includes 15 submitted studies, encompassing 93 protocols for 714 assays, and span over 8 different species including human, Caenorhabditis elegans, Mus musculus and Arabidopsis thaliana. Eight hundred twenty-seven of the metabolites identified in these studies have been mapped to ChEBI. These studies cover a variety of techniques, including NMR spectroscopy and mass spectrometry.
doi:10.1093/nar/gks1004
PMCID: PMC3531110  PMID: 23109552
22.  MetaboLights: towards a new COSMOS of metabolomics data management 
Metabolomics  2012;8(5):757-760.
Exciting funding initiatives are emerging in Europe and the US for metabolomics data production, storage, dissemination and analysis. This is based on a rich ecosystem of resources around the world, which has been build during the past ten years, including but not limited to resources such as MassBank in Japan and the Human Metabolome Database in Canada. Now, the European Bioinformatics Institute has launched MetaboLights, a database for metabolomics experiments and the associated metadata (http://www.ebi.ac.uk/metabolights). It is the first comprehensive, cross-species, cross-platform metabolomics database maintained by one of the major open access data providers in molecular biology. In October, the European COSMOS consortium will start its work on Metabolomics data standardization, publication and dissemination workflows. The NIH in the US is establishing 6–8 metabolomics services cores as well as a national metabolomics repository. This communication reports about MetaboLights as a new resource for Metabolomics research, summarises the related developments and outlines how they may consolidate the knowledge management in this third large omics field next to proteomics and genomics.
doi:10.1007/s11306-012-0462-0
PMCID: PMC3465651  PMID: 23060735
Metabolomics; Databases; ISA-Tab; ISA commons
23.  Toward interoperable bioscience data 
Nature genetics  2012;44(2):121-126.
To make full use of research data, the bioscience community needs to adopt technologies and reward mechanisms that support interoperability and promote the growth of an open ‘data commoning’ culture. Here we describe the prerequisites for data commoning and present an established and growing ecosystem of solutions using the shared ‘Investigation-Study-Assay’ framework to support that vision.
doi:10.1038/ng.1054
PMCID: PMC3428019  PMID: 22281772
24.  Bioinformatics Meets User-Centred Design: A Perspective 
PLoS Computational Biology  2012;8(7):e1002554.
Designers have a saying that “the joy of an early release lasts but a short time. The bitterness of an unusable system lasts for years.” It is indeed disappointing to discover that your data resources are not being used to their full potential. Not only have you invested your time, effort, and research grant on the project, but you may face costly redesigns if you want to improve the system later. This scenario would be less likely if the product was designed to provide users with exactly what they need, so that it is fit for purpose before its launch. We work at EMBL-European Bioinformatics Institute (EMBL-EBI), and we consult extensively with life science researchers to find out what they need from biological data resources. We have found that although users believe that the bioinformatics community is providing accurate and valuable data, they often find the interfaces to these resources tricky to use and navigate. We believe that if you can find out what your users want even before you create the first mock-up of a system, the final product will provide a better user experience. This would encourage more people to use the resource and they would have greater access to the data, which could ultimately lead to more scientific discoveries. In this paper, we explore the need for a user-centred design (UCD) strategy when designing bioinformatics resources and illustrate this with examples from our work at EMBL-EBI. Our aim is to introduce the reader to how selected UCD techniques may be successfully applied to software design for bioinformatics.
doi:10.1371/journal.pcbi.1002554
PMCID: PMC3395592  PMID: 22807660
25.  Natural product-likeness score revisited: an open-source, open-data implementation 
BMC Bioinformatics  2012;13:106.
Background
Natural product-likeness of a molecule, i.e. similarity of this molecule to the structure space covered by natural products, is a useful criterion in screening compound libraries and in designing new lead compounds. A closed source implementation of a natural product-likeness score, that finds its application in virtual screening, library design and compound selection, has been previously reported by one of us. In this note, we report an open-source and open-data re-implementation of this scoring system, illustrate its efficiency in ranking small molecules for natural product likeness and discuss its potential applications.
Results
The Natural-Product-Likeness scoring system is implemented as Taverna 2.2 workflows, and is available under Creative Commons Attribution-Share Alike 3.0 Unported License at http://www.myexperiment.org/packs/183.html. It is also available for download as executable standalone java package from http://sourceforge.net/projects/np-likeness/under Academic Free License.
Conclusions
Our open-source, open-data Natural-Product-Likeness scoring system can be used as a filter for metabolites in Computer Assisted Structure Elucidation or to select natural-product-like molecules from molecular libraries for the use as leads in drug discovery.
doi:10.1186/1471-2105-13-106
PMCID: PMC3436723  PMID: 22607271

Results 1-25 (49)