PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A comprehensive promoter landscape identifies a novel promoter for CD133 in restricted tissues, cancers, and stem cells 
Frontiers in Genetics  2013;4:209.
PROM1 is the gene encoding prominin-1 or CD133, an important cell surface marker for the isolation of both normal and cancer stem cells. PROM1 transcripts initiate at a range of transcription start sites (TSS) associated with distinct tissue and cancer expression profiles. Using high resolution Cap Analysis of Gene Expression (CAGE) sequencing we characterize TSS utilization across a broad range of normal and developmental tissues. We identify a novel proximal promoter (P6) within CD133+ melanoma cell lines and stem cells. Additional exon array sampling finds P6 to be active in populations enriched for mesenchyme, neural stem cells and within CD133+ enriched Ewing sarcomas. The P6 promoter is enriched with respect to previously characterized PROM1 promoters for a HMGI/Y (HMGA1) family transcription factor binding site motif and exhibits different epigenetic modifications relative to the canonical promoter region of PROM1.
doi:10.3389/fgene.2013.00209
PMCID: PMC3810939  PMID: 24194746
PROM1 protein; human; AC133 antigen; transcription start site; promoter regions; genetic; melanoma; cancer stem cells
2.  Differential cellular recognition pattern to M. tuberculosis targets defined by IFN-γ and IL-17 production in blood from TB + patients from Honduras as compared to health care workers: TB and immune responses in patients from Honduras 
BMC Infectious Diseases  2013;13:125.
Background
A better understanding of the quality of cellular immune responses directed against molecularly defined targets will guide the development of TB diagnostics and identification of molecularly defined, clinically relevant M.tb vaccine candidates.
Methods
Recombinant proteins (n = 8) and peptide pools (n = 14) from M. tuberculosis (M.tb) targets were used to compare cellular immune responses defined by IFN-γ and IL-17 production using a Whole Blood Assay (WBA) in a cohort of 148 individuals, i.e. patients with TB + (n = 38), TB- individuals with other pulmonary diseases (n = 81) and individuals exposed to TB without evidence of clinical TB (health care workers, n = 29).
Results
M.tb antigens Rv2958c (glycosyltransferase), Rv2962c (mycolyltransferase), Rv1886c (Ag85B), Rv3804c (Ag85A), and the PPE family member Rv3347c were frequently recognized, defined by IFN-γ production, in blood from healthy individuals exposed to M.tb (health care workers). A different recognition pattern was found for IL-17 production in blood from M.tb exposed individuals responding to TB10.4 (Rv0288), Ag85B (Rv1886c) and the PPE family members Rv0978c and Rv1917c.
Conclusions
The pattern of immune target recognition is different in regard to IFN-γ and IL-17 production to defined molecular M.tb targets in PBMCs from individuals frequently exposed to M.tb. The data represent the first mapping of cellular immune responses against M.tb targets in TB patients from Honduras.
doi:10.1186/1471-2334-13-125
PMCID: PMC3599548  PMID: 23497342
T-cells; M. tuberculosis; TB; Antigen-recognition; Biomarkers
3.  The Epstein–Barr virus nuclear antigen-1 reprograms transcription by mimicry of high mobility group A proteins 
Nucleic Acids Research  2013;41(5):2950-2962.
Viral proteins reprogram their host cells by hijacking regulatory components of protein networks. Here we describe a novel property of the Epstein–Barr virus (EBV) nuclear antigen-1 (EBNA1) that may underlie the capacity of the virus to promote a global remodeling of chromatin architecture and cellular transcription. We found that the expression of EBNA1 in transfected human and mouse cells is associated with decreased prevalence of heterochromatin foci, enhanced accessibility of cellular DNA to micrococcal nuclease digestion and decreased average length of nucleosome repeats, suggesting de-protection of the nucleosome linker regions. This is a direct effect of EBNA1 because targeting the viral protein to heterochromatin promotes large-scale chromatin decondensation with slow kinetics and independent of the recruitment of adenosine triphosphate–dependent chromatin remodelers. The remodeling function is mediated by a bipartite Gly-Arg rich domain of EBNA1 that resembles the AT-hook of High Mobility Group A (HMGA) architectural transcription factors. Similar to HMGAs, EBNA1 is highly mobile in interphase nuclei and promotes the mobility of linker histone H1, which counteracts chromatin condensation and alters the transcription of numerous cellular genes. Thus, by regulating chromatin compaction, EBNA1 may reset cellular transcription during infection and prime the infected cells for malignant transformation.
doi:10.1093/nar/gkt032
PMCID: PMC3597695  PMID: 23358825
4.  The Stem Cell Discovery Engine: an integrated repository and analysis system for cancer stem cell comparisons 
Nucleic Acids Research  2011;40(D1):D984-D991.
Mounting evidence suggests that malignant tumors are initiated and maintained by a subpopulation of cancerous cells with biological properties similar to those of normal stem cells. However, descriptions of stem-like gene and pathway signatures in cancers are inconsistent across experimental systems. Driven by a need to improve our understanding of molecular processes that are common and unique across cancer stem cells (CSCs), we have developed the Stem Cell Discovery Engine (SCDE)—an online database of curated CSC experiments coupled to the Galaxy analytical framework. The SCDE allows users to consistently describe, share and compare CSC data at the gene and pathway level. Our initial focus has been on carefully curating tissue and cancer stem cell-related experiments from blood, intestine and brain to create a high quality resource containing 53 public studies and 1098 assays. The experimental information is captured and stored in the multi-omics Investigation/Study/Assay (ISA-Tab) format and can be queried in the data repository. A linked Galaxy framework provides a comprehensive, flexible environment populated with novel tools for gene list comparisons against molecular signatures in GeneSigDB and MSigDB, curated experiments in the SCDE and pathways in WikiPathways. The SCDE is available at http://discovery.hsci.harvard.edu.
doi:10.1093/nar/gkr1051
PMCID: PMC3245064  PMID: 22121217
5.  Transcription Profiling of Epstein-Barr Virus Nuclear Antigen (EBNA)-1 Expressing Cells Suggests Targeting of Chromatin Remodeling Complexes 
PLoS ONE  2010;5(8):e12052.
The Epstein-Barr virus (EBV) encoded nuclear antigen (EBNA)-1 regulates virus replication and transcription, and participates in the remodeling of the cellular environment that accompanies EBV induced B-cell immortalization and malignant transformation. The putative cellular targets of these effects of EBNA-1 are largely unknown. To address this issue we have profiled the transcriptional changes induced by short- and long-term expression of EBNA-1 in the EBV negative B-cell lymphoma BJAB. Three hundred and nineteen cellular genes were regulated in a conditional transfectant shortly after EBNA-1 induction while a ten fold higher number of genes was regulated upon continuous EBNA-1 expression. Promoter analysis of the differentially regulated genes demonstrated a significant enrichment of putative EBNA-1 binding sites suggesting that EBNA-1 may directly influence the transcription of a subset of genes. Gene ontology analysis of forty seven genes that were consistently regulated independently on the time of EBNA-1 expression revealed an unexpected enrichment of genes involved in the maintenance of chromatin architecture. The interaction network of the affected gene products suggests that EBNA-1 may promote a broad rearrangement of the cellular transcription landscape by altering the expression of key components of chromatin remodeling complexes.
doi:10.1371/journal.pone.0012052
PMCID: PMC2919392  PMID: 20706582
6.  Epstein-Barr Virus Encodes Three Bona Fide Ubiquitin-Specific Proteases▿ ‡  
Journal of Virology  2008;82(21):10477-10486.
Manipulation of the ubiquitin proteasome system (UPS) is emerging as a common theme in viral pathogenesis. Some viruses have been shown to encode functional homologs of UPS enzymes, suggesting that a systematic identification of these products may provide new insights into virus-host cell interactions. Ubiquitin-specific proteases, collectively known as deubiquitinating enzymes (DUBs), regulate the activity of the UPS by hydrolyzing ubiquitin peptide or isopeptide bonds. The prediction of viral DUBs based on sequence similarity with known enzymes is hampered by the diversity of viral genomes. In this study sequence alignments, pattern searches, and hidden Markov models were developed for the conserved C- and H-boxes of the known DUB families and used to search the open reading frames (ORFs) of Epstein-Barr virus (EBV), a large gammaherpesvirus that has been implicated in the pathogenesis of a broad spectrum of human malignancies of lymphoid and epithelial cell origin. The searches identified a limited number of EBV ORFs that contain putative DUB catalytic domains. DUB activity was confirmed by functional assays and mutation analysis for three high scoring candidates, supporting the usefulness of this bioinformatics approach in predicting distant homologues of cellular enzymes.
doi:10.1128/JVI.01113-08
PMCID: PMC2573217  PMID: 18715931
7.  The MAPK Signaling Cascade is a Central Hub in the Regulation of Cell Cycle, Apoptosis and Cytoskeleton Remodeling by Tripeptidyl-Peptidase II 
Tripeptidyl-peptidase II (TPPII) is a serine peptidase highly expressed in malignant Burkitt’s lymphoma cells (BL). We have previously shown that overexpression of TPPII correlates with chromosomal instability, centrosomal and mitotic spindle abnormalities and resistance to apoptosis induced by spindle poisons. Furthermore, TPPII knockdown by RNAi was associated with endoreplication and the accumulation of polynucleated cells that failed to complete cell division, indicating a role of TPPII in the cell cycle. Here we have applied a global approach of gene expression analysis to gain insights on the mechanism by which TPPII regulates this phenotype. mRNA profiling of control and TPPII knockdown BL cells identified one hundred and eighty five differentially expressed genes. Functional categorization of these genes highlighted major physiological functions such as apoptosis, cell cycle progression, cytoskeleton remodeling, proteolysis, and signal transduction. Pathways and protein interactome analysis revealed a significant enrichment in components of MAP kinases signaling. These findings suggest that TPPII influences a wide network of signaling pathways that are regulated by MAPKs and exerts thereby a pleiotropic effect on biological processes associated with cell survival, proliferation and genomic instability.
PMCID: PMC2733081  PMID: 19787088
TPPII; MAPK signaling; centrosome; cell cycle; cytoskeleton

Results 1-7 (7)