PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("luck, sargus")
1.  AHT-ChIP-seq: a completely automated robotic protocol for high-throughput chromatin immunoprecipitation 
Genome Biology  2013;14(11):R124.
ChIP-seq is an established manually-performed method for identifying DNA-protein interactions genome-wide. Here, we describe a protocol for automated high-throughput (AHT) ChIP-seq. To demonstrate the quality of data obtained using AHT-ChIP-seq, we applied it to five proteins in mouse livers using a single 96-well plate, demonstrating an extremely high degree of qualitative and quantitative reproducibility among biological and technical replicates. We estimated the optimum and minimum recommended cell numbers required to perform AHT-ChIP-seq by running an additional plate using HepG2 and MCF7 cells. With this protocol, commercially available robotics can perform four hundred experiments in five days.
doi:10.1186/gb-2013-14-11-r124
PMCID: PMC4053851  PMID: 24200198
2.  Global Gene Expression Profiling Reveals SPINK1 as a Potential Hepatocellular Carcinoma Marker 
PLoS ONE  2013;8(3):e59459.
Background
Liver cirrhosis is the most important risk factor for hepatocellular carcinoma (HCC) but the role of liver disease aetiology in cancer development remains under-explored. We investigated global gene expression profiles from HCC arising in different liver diseases to test whether HCC development is driven by expression of common or different genes, which could provide new diagnostic markers or therapeutic targets.
Methodology and Principal Findings
Global gene expression profiling was performed for 4 normal (control) livers as well as 8 background liver and 7 HCC from 3 patients with hereditary haemochromatosis (HH) undergoing surgery. In order to investigate different disease phenotypes causing HCC, the data were compared with public microarray repositories for gene expression in normal liver, hepatitis C virus (HCV) cirrhosis, HCV-related HCC (HCV-HCC), hepatitis B virus (HBV) cirrhosis and HBV-related HCC (HBV-HCC). Principal component analysis and differential gene expression analysis were carried out using R Bioconductor. Liver disease-specific and shared gene lists were created and genes identified as highly expressed in hereditary haemochromatosis HCC (HH-HCC) were validated using quantitative RT-PCR. Selected genes were investigated further using immunohistochemistry in 86 HCC arising in liver disorders with varied aetiology. Using a 2-fold cut-off, 9 genes were highly expressed in all HCC, 11 in HH-HCC, 270 in HBV-HCC and 9 in HCV-HCC. Six genes identified by microarray as highly expressed in HH-HCC were confirmed by RT qPCR. Serine peptidase inhibitor, Kazal type 1 (SPINK1) mRNA was very highly expressed in HH-HCC (median fold change 2291, p = 0.0072) and was detected by immunohistochemistry in 91% of HH-HCC, 0% of HH-related cirrhotic or dysplastic nodules and 79% of mixed-aetiology HCC.
Conclusion
HCC, arising from diverse backgrounds, uniformly over-express a small set of genes. SPINK1, a secretory trypsin inhibitor, demonstrated potential as a diagnostic HCC marker and should be evaluated in future studies.
doi:10.1371/journal.pone.0059459
PMCID: PMC3601070  PMID: 23527199
3.  Latent Regulatory Potential of Human-Specific Repetitive Elements 
Molecular Cell  2013;49(2):262-272.
Summary
At least half of the human genome is derived from repetitive elements, which are often lineage specific and silenced by a variety of genetic and epigenetic mechanisms. Using a transchromosomic mouse strain that transmits an almost complete single copy of human chromosome 21 via the female germline, we show that a heterologous regulatory environment can transcriptionally activate transposon-derived human regulatory regions. In the mouse nucleus, hundreds of locations on human chromosome 21 newly associate with activating histone modifications in both somatic and germline tissues, and influence the gene expression of nearby transcripts. These regions are enriched with primate and human lineage-specific transposable elements, and their activation corresponds to changes in DNA methylation at CpG dinucleotides. This study reveals the latent regulatory potential of the repetitive human genome and illustrates the species specificity of mechanisms that control it.
Highlights
► A mouse carrying human chromosome 21 fails to repress primate-specific repeats ► The lack of repression was revealed by H3K4me3 and transcription factor binding ► Activation corresponded to a decrease in CpG methylation ► Primate-specific repeats activated in human testes were activated in the Tc1 mouse
doi:10.1016/j.molcel.2012.11.013
PMCID: PMC3560060  PMID: 23246434
4.  MageComet—web application for harmonizing existing large-scale experiment descriptions 
Bioinformatics  2012;28(10):1402-1403.
Motivation: Meta-analysis of large gene expression datasets obtained from public repositories requires consistently annotated data. Curation of such experiments, however, is an expert activity which involves repetitive manipulation of text. Existing tools for automated curation are few, which bottleneck the analysis pipeline.
Results: We present MageComet, a web application for biologists and annotators that facilitates the re-annotation of gene expression experiments in MAGE-TAB format. It incorporates data mining, automatic annotation, use of ontologies and data validation to improve the consistency and quality of experimental meta-data from the ArrayExpress Repository.
Availability and implementation: Source and tutorials for MageComet are openly available at goo.gl/8LQPR under the GNU GPL v3 licenses. An implementation can be found at goo.gl/IdCuA
Contact: parkinson@ebi.ac.uk or xue.vin@gmail.com
doi:10.1093/bioinformatics/bts148
PMCID: PMC3348561  PMID: 22474121
5.  Assessing affymetrix GeneChip microarray quality 
BMC Bioinformatics  2011;12:137.
Background
Microarray technology has become a widely used tool in the biological sciences. Over the past decade, the number of users has grown exponentially, and with the number of applications and secondary data analyses rapidly increasing, we expect this rate to continue. Various initiatives such as the External RNA Control Consortium (ERCC) and the MicroArray Quality Control (MAQC) project have explored ways to provide standards for the technology. For microarrays to become generally accepted as a reliable technology, statistical methods for assessing quality will be an indispensable component; however, there remains a lack of consensus in both defining and measuring microarray quality.
Results
We begin by providing a precise definition of microarray quality and reviewing existing Affymetrix GeneChip quality metrics in light of this definition. We show that the best-performing metrics require multiple arrays to be assessed simultaneously. While such multi-array quality metrics are adequate for bench science, as microarrays begin to be used in clinical settings, single-array quality metrics will be indispensable. To this end, we define a single-array version of one of the best multi-array quality metrics and show that this metric performs as well as the best multi-array metrics. We then use this new quality metric to assess the quality of microarry data available via the Gene Expression Omnibus (GEO) using more than 22,000 Affymetrix HGU133a and HGU133plus2 arrays from 809 studies.
Conclusions
We find that approximately 10 percent of these publicly available arrays are of poor quality. Moreover, the quality of microarray measurements varies greatly from hybridization to hybridization, study to study, and lab to lab, with some experiments producing unusable data. Many of the concepts described here are applicable to other high-throughput technologies.
doi:10.1186/1471-2105-12-137
PMCID: PMC3097162  PMID: 21548974
6.  ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments 
Nucleic Acids Research  2010;39(Database issue):D1002-D1004.
The ArrayExpress Archive (http://www.ebi.ac.uk/arrayexpress) is one of the three international public repositories of functional genomics data supporting publications. It includes data generated by sequencing or array-based technologies. Data are submitted by users and imported directly from the NCBI Gene Expression Omnibus. The ArrayExpress Archive is closely integrated with the Gene Expression Atlas and the sequence databases at the European Bioinformatics Institute. Advanced queries provided via ontology enabled interfaces include queries based on technology and sample attributes such as disease, cell types and anatomy.
doi:10.1093/nar/gkq1040
PMCID: PMC3013660  PMID: 21071405
7.  A global map of human gene expression 
Nature biotechnology  2010;28(4):322-324.
doi:10.1038/nbt0410-322
PMCID: PMC2974261  PMID: 20379172
8.  Importing ArrayExpress datasets into R/Bioconductor 
Bioinformatics  2009;25(16):2092-2094.
Summary:ArrayExpress is one of the largest public repositories of microarray datasets. R/Bioconductor provides a comprehensive suite of microarray analysis and integrative bioinformatics software. However, easy ways for importing datasets from ArrayExpress into R/Bioconductor have been lacking. Here, we present such a tool that is suitable for both interactive and automated use.
Availability: The ArrayExpress package is available from the Bioconductor project at http://www.bioconductor.org. A users guide and examples are provided with the package.
Contact: audrey@ebi.ac.uk
Supplementary information:Supplementary data are available Bioinformatics online.
doi:10.1093/bioinformatics/btp354
PMCID: PMC2723004  PMID: 19505942
9.  ArrayExpress update—from an archive of functional genomics experiments to the atlas of gene expression 
Nucleic Acids Research  2008;37(Database issue):D868-D872.
ArrayExpress http://www.ebi.ac.uk/arrayexpress consists of three components: the ArrayExpress Repository—a public archive of functional genomics experiments and supporting data, the ArrayExpress Warehouse—a database of gene expression profiles and other bio-measurements and the ArrayExpress Atlas—a new summary database and meta-analytical tool of ranked gene expression across multiple experiments and different biological conditions. The Repository contains data from over 6000 experiments comprising approximately 200 000 assays, and the database doubles in size every 15 months. The majority of the data are array based, but other data types are included, most recently—ultra high-throughput sequencing transcriptomics and epigenetic data. The Warehouse and Atlas allow users to query for differentially expressed genes by gene names and properties, experimental conditions and sample properties, or a combination of both. In this update, we describe the ArrayExpress developments over the last two years.
doi:10.1093/nar/gkn889
PMCID: PMC2686529  PMID: 19015125
10.  MAGETabulator, a suite of tools to support the microarray data format MAGE-TAB 
Bioinformatics  2008;25(2):279-280.
Summary: The MAGE-TAB format for microarray data representation and exchange has been proposed by the microarray community to replace the more complex MAGE-ML format. We present a suite of tools to support MAGE-TAB generation and validation, conversion between existing formats for data exchange, visualization of the experiment designs encoded by MAGE-TAB documents and the mining of such documents for semantic content.
Availability: Software is available from http://tab2mage.sourceforge.net/
Contact: tfrayner@gmail.com
doi:10.1093/bioinformatics/btn617
PMCID: PMC2638998  PMID: 19038988

Results 1-10 (10)