Search tips
Search criteria

Results 1-25 (36)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Dietary nitrate increases arginine availability and protects mitochondrial complex I and energetics in the hypoxic rat heart 
The Journal of Physiology  2014;592(Pt 21):4715-4731.
Hypoxic exposure is associated with impaired cardiac energetics in humans and altered mitochondrial function, with suppressed complex I-supported respiration, in rat heart. This response might limit reactive oxygen species generation, but at the cost of impaired electron transport chain (ETC) activity. Dietary nitrate supplementation improves mitochondrial efficiency and can promote tissue oxygenation by enhancing blood flow. We therefore hypothesised that ETC dysfunction, impaired energetics and oxidative damage in the hearts of rats exposed to chronic hypoxia could be alleviated by sustained administration of a moderate dose of dietary nitrate. Male Wistar rats (n = 40) were given water supplemented with 0.7 mmol l−1 NaCl (as control) or 0.7 mmol l−1 NaNO3, elevating plasma nitrate levels by 80%, and were exposed to 13% O2 (hypoxia) or normoxia (n = 10 per group) for 14 days. Respiration rates, ETC protein levels, mitochondrial density, ATP content and protein carbonylation were measured in cardiac muscle. Complex I respiration rates and protein levels were 33% lower in hypoxic/NaCl rats compared with normoxic/NaCl controls. Protein carbonylation was 65% higher in hearts of hypoxic rats compared with controls, indicating increased oxidative stress, whilst ATP levels were 62% lower. Respiration rates, complex I protein and activity, protein carbonylation and ATP levels were all fully protected in the hearts of nitrate-supplemented hypoxic rats. Both in normoxia and hypoxia, dietary nitrate suppressed cardiac arginase expression and activity and markedly elevated cardiac l-arginine concentrations, unmasking a novel mechanism of action by which nitrate enhances tissue NO bioavailability. Dietary nitrate therefore alleviates metabolic abnormalities in the hypoxic heart, improving myocardial energetics.
PMCID: PMC4253472  PMID: 25172947
2.  A metabolomics investigation of non genotoxic carcinogenicity in the rat 
Journal of proteome research  2013;12(12):5775-5790.
Non-genotoxic carcinogens (NGCs) promote tumour growth by altering gene expression which ultimately leads to cancer without directly causing a change in DNA sequence. As a result NGCs are not detected in mutagenesis assays. Whilst there are proposed biomarkers of carcinogenic potential, the definitive identification of non-genotoxic carcinogens still rests with the rat and mouse long term bioassay. Such assays are expensive, time consuming, require a large number of animals and their relevance to human health risk assessments is debatable.
Metabolomics and lipidomics in combination with pathology and clinical chemistry were used to profile perturbations produced by 10 compounds which represented a range of rat non-genotoxic hepatocarcinogens (NGC), non-genotoxic non-hepatocarcinogens (non-NGC) and a genotoxic hepatocarcinogen. Each compound was administered at its maximum tolerated dose level for 7, 28 and 91 days to male Fisher 344 rats.
Changes in liver metabolite concentration differentiated the treated groups across different time points. The most significant differences were driven by pharmacological mode of action, specifically by the peroxisome proliferator activated receptor alpha (PPAR-α) agonists. Despite these dominant effects, good predictions could be made when differentiating NGCs from non-NGCs. Predictive ability measured by leave one out cross validation was 87% and 77% after 28 days of dosing for NGCs and non-NGCs, respectively. Amongst the discriminatory metabolites we identified free fatty acids, phospholipids, triacylglycerols, as well as precursors of eicosanoid and the products of reactive oxygen species linked to processes of inflammation, proliferation and oxidative stress. Thus, metabolic profiling is able to identify changes due to the pharmacological mode of action of xenobiotics and contribute to early screening for non-genotoxic potential.
PMCID: PMC3980845  PMID: 24161236
non-genotoxic carcinogens; metabolomics; lipidomics; PPAR alpha agonist; CAR receptor
3.  A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism 
The Journal of General Virology  2015;96(Pt 2):395-407.
Vaccinia virus (VACV) is a large DNA virus that replicates in the cytoplasm and encodes about 200 proteins of which approximately 50 % may be non-essential for viral replication. These proteins enable VACV to suppress transcription and translation of cellular genes, to inhibit the innate immune response, to exploit microtubule- and actin-based transport for virus entry and spread, and to subvert cellular metabolism for the benefit of the virus. VACV strain WR protein C16 induces stabilization of the hypoxia-inducible transcription factor (HIF)-1α by binding to the cellular oxygen sensor prolylhydroxylase domain-containing protein (PHD)2. Stabilization of HIF-1α is induced by several virus groups, but the purpose and consequences are unclear. Here, 1H-NMR spectroscopy and liquid chromatography-mass spectrometry are used to investigate the metabolic alterations during VACV infection in HeLa and 2FTGH cells. The role of C16 in such alterations was examined by comparing infection to WT VACV (strain WR) and a derivative virus lacking gene C16L (vΔC16). Compared with uninfected cells, VACV infection caused increased nucleotide and glutamine metabolism. In addition, there were increased concentrations of glutamine derivatives in cells infected with WT VACV compared with vΔC16. This indicates that C16 contributes to enhanced glutamine metabolism and this may help preserve tricarboxylic acid cycle activity. These data show that VACV infection reprogrammes cellular energy metabolism towards increased synthesis of the metabolic precursors utilized during viral replication, and that C16 contributes to this anabolic reprogramming of the cell, probably via the stabilization of HIF-1α.
PMCID: PMC4298679  PMID: 25351724
4.  Adaptive Changes of the Insig1/SREBP1/SCD1 Set Point Help Adipose Tissue to Cope With Increased Storage Demands of Obesity 
Diabetes  2013;62(11):3697-3708.
The epidemic of obesity imposes unprecedented challenges on human adipose tissue (WAT) storage capacity that may benefit from adaptive mechanisms to maintain adipocyte functionality. Here, we demonstrate that changes in the regulatory feedback set point control of Insig1/SREBP1 represent an adaptive response that preserves WAT lipid homeostasis in obese and insulin-resistant states. In our experiments, we show that Insig1 mRNA expression decreases in WAT from mice with obesity-associated insulin resistance and from morbidly obese humans and in in vitro models of adipocyte insulin resistance. Insig1 downregulation is part of an adaptive response that promotes the maintenance of SREBP1 maturation and facilitates lipogenesis and availability of appropriate levels of fatty acid unsaturation, partially compensating the antilipogenic effect associated with insulin resistance. We describe for the first time the existence of this adaptive mechanism in WAT, which involves Insig1/SREBP1 and preserves the degree of lipid unsaturation under conditions of obesity-induced insulin resistance. These adaptive mechanisms contribute to maintain lipid desaturation through preferential SCD1 regulation and facilitate fat storage in WAT, despite on-going metabolic stress.
PMCID: PMC3806615  PMID: 23919961
5.  Transcription Factor Nrf1 Negatively Regulates the Cystine/Glutamate Transporter and Lipid-Metabolizing Enzymes 
Molecular and Cellular Biology  2014;34(20):3800-3816.
Liver-specific Nrf1 (NF-E2-p45-related factor 1) knockout mice develop nonalcoholic steatohepatitis. To identify postnatal mechanisms responsible for this phenotype, we generated an inducible liver-specific Nrf1 knockout mouse line using animals harboring an Nrf1flox allele and a rat CYP1A1-Cre transgene (Nrf1flox/flox::CYP1A1-Cre mice). Administration of 3-methylcholanthrene (3-MC) to these mice (Nrf1flox/flox::CYP1A1-Cre+3MC mice) resulted in loss of hepatic Nrf1 expression. The livers of mice lacking Nrf1 accumulated lipid, and the hepatic fatty acid (FA) composition in such animals differed significantly from that in the Nrf1flox/flox::CYP1A1-Cre control. This change was provoked by upregulation of several FA metabolism genes. Unexpectedly, we also found that the level of glutathione was increased dramatically in livers of Nrf1flox/flox::CYP1A1-Cre+3MC mice. While expression of glutathione biosynthetic enzymes was unchanged, xCT, a component of the cystine/glutamate antiporter system xc−, was significantly upregulated in livers of Nrf1flox/flox::CYP1A1-Cre+3MC mice, suggesting that Nrf1 normally suppresses xCT. Thus, stress-inducible expression of xCT is a two-step process: under homeostatic conditions, Nrf1 effectively suppresses nonspecific transactivation of xCT, but when cells encounter severe oxidative/electrophilic stress, Nrf1 is displaced from an antioxidant response element (ARE) in the gene promoter while Nrf2 is recruited to the ARE. Thus, Nrf1 controls both the FA and the cystine/cysteine content of hepatocytes by participating in an elaborate regulatory network.
PMCID: PMC4187719  PMID: 25092871
6.  Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study 
Conflicting evidence exists regarding the association between saturated fatty acids (SFAs) and type 2 diabetes. In this longitudinal case-cohort study, we aimed to investigate the prospective associations between objectively measured individual plasma phospholipid SFAs and incident type 2 diabetes in EPIC-InterAct participants.
The EPIC-InterAct case-cohort study includes 12 403 people with incident type 2 diabetes and a representative subcohort of 16 154 individuals who were selected from a cohort of 340 234 European participants with 3·99 million person-years of follow-up (the EPIC study). Incident type 2 diabetes was ascertained until Dec 31, 2007, by a review of several sources of evidence. Gas chromatography was used to measure the distribution of fatty acids in plasma phospholipids (mol%); samples from people with type 2 diabetes and subcohort participants were processed in a random order by centre, and laboratory staff were masked to participant characteristics. We estimated country-specific hazard ratios (HRs) for associations per SD of each SFA with incident type 2 diabetes using Prentice-weighted Cox regression, which is weighted for case-cohort sampling, and pooled our findings using random-effects meta-analysis.
SFAs accounted for 46% of total plasma phospholipid fatty acids. In adjusted analyses, different individual SFAs were associated with incident type 2 diabetes in opposing directions. Even-chain SFAs that were measured (14:0 [myristic acid], 16:0 [palmitic acid], and 18:0 [stearic acid]) were positively associated with incident type 2 diabetes (HR [95% CI] per SD difference: myristic acid 1·15 [95% CI 1·09–1·22], palmitic acid 1·26 [1·15–1·37], and stearic acid 1·06 [1·00–1·13]). By contrast, measured odd-chain SFAs (15:0 [pentadecanoic acid] and 17:0 [heptadecanoic acid]) were inversely associated with incident type 2 diabetes (HR [95% CI] per 1 SD difference: 0·79 [0·73–0·85] for pentadecanoic acid and 0·67 [0·63–0·71] for heptadecanoic acid), as were measured longer-chain SFAs (20:0 [arachidic acid], 22:0 [behenic acid], 23:0 [tricosanoic acid], and 24:0 [lignoceric acid]), with HRs ranging from 0·72 to 0·81 (95% CIs ranging between 0·61 and 0·92). Our findings were robust to a range of sensitivity analyses.
Different individual plasma phospholipid SFAs were associated with incident type 2 diabetes in opposite directions, which suggests that SFAs are not homogeneous in their effects. Our findings emphasise the importance of the recognition of subtypes of these fatty acids. An improved understanding of differences in sources of individual SFAs from dietary intake versus endogenous metabolism is needed.
EU FP6 programme, Medical Research Council Epidemiology Unit, Medical Research Council Human Nutrition Research, and Cambridge Lipidomics Biomarker Research Initiative.
PMCID: PMC4196248  PMID: 25107467
7.  A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses 
Journal of biomolecular NMR  2011;49(0):175-184.
The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in γ-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1–2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.
PMCID: PMC4123122  PMID: 21461951
Juvenile Neuronal Ceroid Lipofuscinosis (JNCL); Batten disease; CLN3; NMR; Metabolomics; Neurodegeneration
8.  Betaine acts on a ligand-gated ion channel in the nervous system of the nematode C. elegans 
Nature neuroscience  2013;16(12):1794-1801.
Prior to the advent of synthetic nematocides, natural products such as seaweed were used to control nematode infestations. The nematocidal agent in seaweed is betaine, an amino acid that functions as an osmolyte and methyl donor. However, the molecular mechanisms of betaine toxicity are unknown. Here, we identify the betaine transporter SNF-3 and a betaine receptor ACR-23 in the nematode C. elegans. Mutating snf-3 in a sensitized background causes the animals to be hypercontracted and paralyzed, presumably because of excess extracellular betaine. These behavioral defects are suppressed by mutations in acr-23, which encodes a ligand-gated cation channel of the cys-loop family. ACR-23 is activated by betaine and functions in the mechanosensory neurons to maintain basal levels of locomotion. However, overactivation of the receptor by excess betaine or by the allosteric modulator monepantel causes hypercontraction and death of the nematode. Thus, monepantel targets a betaine signaling pathway in nematodes.
PMCID: PMC3955162  PMID: 24212673
betaine receptor; SNF-3; betaine transporter; ACR-23; phospholipase Cβ; egl-8; C. elegans
9.  Whole Blood Transcriptomics and Urinary Metabolomics to Define Adaptive Biochemical Pathways of High-Intensity Exercise in 50-60 Year Old Masters Athletes 
PLoS ONE  2014;9(3):e92031.
Exercise is beneficial for a variety of age-related disorders. However, the molecular mechanisms mediating the beneficial adaptations to exercise in older adults are not well understood. The aim of the current study was to utilize a dual approach to characterize the genetic and metabolic adaptive pathways altered by exercise in veteran athletes and age-matched untrained individuals. Two groups of 50–60 year old males: competitive cyclists (athletes, n = 9; VO2peak 59.1±5.2 ml·kg−1·min−1; peak aerobic power 383±39 W) and untrained, minimally active individuals (controls, n = 8; VO2peak 35.9±9.7 ml·kg−1·min−1; peak aerobic power 230±57 W) were examined. All participants completed an acute bout of submaximal endurance exercise, and blood and urine samples pre- and post-exercise were analyzed for gene expression and metabolic changes utilizing genome-wide DNA microarray analysis and NMR spectroscopy-based metabolomics, respectively. Our results indicate distinct differences in gene and metabolite expression involving energy metabolism, lipids, insulin signaling and cardiovascular function between the two groups. These findings may lead to new insights into beneficial signaling pathways of healthy aging and help identify surrogate markers for monitoring exercise and training load.
PMCID: PMC3958411  PMID: 24643011
10.  The development and validation of a fast and robust dried blood spot based lipid profiling method to study infant metabolism 
Metabolomics  2014;10(5):1018-1025.
Early life exposures and metabolic programming are associated with later disease risk. In particular lipid metabolism is thought to play a key role in the development of the metabolic syndrome and insulin resistance in later life. Investigative studies of metabolic programming are limited by the ethics and practicalities of sample collection in small infants. Dried blood spots on filter paper, derived from heel pricks are considered as the most suitable option for this age group. We validated a novel lipid profiling method, based on high resolution mass spectrometry to successfully determine the lipid composition of infants using dried blood spots. The spotting and air drying of blood on paper has noticeable effects on many of the lipids, leading to lipid oxidation and hydrolysis, which demand careful interpretation of the obtained data. We compared the lipid profiles from plasma or whole blood samples and the results from dried blood spots to determine if these revealed the same inter-subject differences. The results from dried blood spots were no less reproducible than other lipid profiling methods which required comparatively larger sample volumes. Therefore, lipid profiles obtained from dried blood spots can be successfully used to monitor infancy lipid metabolism and we show significant differences in the lipid metabolism of infants at age 3 versus 12 months.
Electronic supplementary material
The online version of this article (doi:10.1007/s11306-014-0628-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4145199  PMID: 25177234
Lipidomics; Dried blood spots; DIMS; FTMS; Infant lipid metabolism
11.  A New Role for Lipocalin Prostaglandin D Synthase in the Regulation of Brown Adipose Tissue Substrate Utilization 
Diabetes  2012;61(12):3139-3147.
In this study, we define a new role for lipocalin prostaglandin D synthase (L-PGDS) in the control of metabolic fuel utilization by brown adipose tissue (BAT). We demonstrate that L-PGDS expression in BAT is positively correlated with BAT activity, upregulated by peroxisome proliferator–activated receptor γ coactivator 1α or 1β and repressed by receptor-interacting protein 140. Under cold-acclimated conditions, mice lacking L-PGDS had elevated reliance on carbohydrate to provide fuel for thermogenesis and had increased expression of genes regulating glycolysis and de novo lipogenesis in BAT. These transcriptional differences were associated with increased lipid content in BAT and a BAT lipid composition enriched with de novo synthesized lipids. Consistent with the concept that lack of L-PGDS increases glucose utilization, mice lacking L-PGDS had improved glucose tolerance after high-fat feeding. The improved glucose tolerance appeared to be independent of changes in insulin sensitivity, as insulin levels during the glucose tolerance test and insulin, leptin, and adiponectin levels were unchanged. Moreover, L-PGDS knockout mice exhibited increased expression of genes involved in thermogenesis and increased norepinephrine-stimulated glucose uptake to BAT, suggesting that sympathetically mediated changes in glucose uptake may have improved glucose tolerance. Taken together, these results suggest that L-PGDS plays an important role in the regulation of glucose utilization in vivo.
PMCID: PMC3501861  PMID: 22923471
12.  Obesity in mice with adipocyte-specific deletion of clock component Arntl 
Nature medicine  2012;18(12):1768-1777.
Adipocytes store excess energy in the form of triglycerides and signal the levels of stored energy to the brain. Here we show that adipocyte-specific deletion of Arntl (also known as Bmal1), a gene encoding a core molecular clock component, results in obesity in mice with a shift in the diurnal rhythm of food intake, a result that is not seen when the gene is disrupted in hepatocytes or pancreatic islets. Changes in the expression of hypothalamic neuropeptides that regulate appetite are consistent with feedback from the adipocyte to the central nervous system to time feeding behavior. Ablation of the adipocyte clock is associated with a reduced number of polyunsaturated fatty acids in adipocyte triglycerides. This difference between mutant and wild-type mice is reflected in the circulating concentrations of polyunsaturated fatty acids and nonesterified polyunsaturated fatty acids in hypothalamic neurons that regulate food intake. Thus, this study reveals a role for the adipocyte clock in the temporal organization of energy regulation, highlights timing as a modulator of the adipocyte-hypothalamic axis and shows the impact of timing of food intake on body weight.
PMCID: PMC3782286  PMID: 23142819
13.  Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI) 
There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental replication, and enables the re-interrogation and comparison of data by others. Accordingly, the Metabolomics Standards Initiative is building a general consensus concerning the minimum reporting standards for metabolomics experiments of which the Chemical Analysis Working Group (CAWG) is a member of this community effort. This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing. These minimum standards currently focus mostly upon mass spectrometry and nuclear magnetic resonance spectroscopy due to the popularity of these techniques in metabolomics. However, additional input concerning other techniques is welcomed and can be provided via the CAWG on-line discussion forum at or Further, community input related to this document can also be provided via this electronic forum.
PMCID: PMC3772505  PMID: 24039616
Metabolomics; Metabolite profiling; Metabolite identification; Minimum reporting standards; Chemical analysis; Mass spectrometry; Nuclear magnetic resonance; Flux; Isotopomer analysis; GC-MS; LC-MS; CE-MS; NMR; Quality control; Method validation
14.  Applications of metabolomics for understanding the action of peroxisome proliferator-activated receptors (PPARs) in diabetes, obesity and cancer 
Genome Medicine  2012;4(4):32.
The peroxisome proliferator-activated receptors (PPARs) are a set of three nuclear hormone receptors that together play a key role in regulating metabolism, particularly the switch between the fed and fasted state and the metabolic pathways involving fatty-acid oxidation and lipid metabolism. In addition, they have a number of important developmental and regulatory roles outside metabolism. The PPARs are also potent targets for treating type II diabetes, dyslipidemia and obesity, although a number of individual agonists have also been linked to unwanted side effects, and there is a complex relationship between the PPARs and the development of cancer. This review examines the part that metabolomics, including lipidomics, has played in elucidating the roles PPARs have in regulating systemic metabolism, as well as their role in aspects of drug-induced cancer and xenobiotic metabolism. These studies have defined the role PPARδ plays in regulating fatty-acid oxidation in adipose tissue and the interaction between aging and PPARα in the liver. The potential translational benefits of these approaches include widening the role of PPAR agonists and improved monitoring of drug efficacy.
PMCID: PMC3446260  PMID: 22546357
metabolic syndrome; obesity; peroxisome proliferator-activated receptors; type II diabetes; functional genomics; the metabolic syndrome
15.  Increased unsaturation of lipids in cytoplasmic lipid droplets in DAOY cancer cells in response to cisplatin treatment 
Metabolomics  2012;9(3):722-729.
Increases in 1H nuclear magnetic resonance spectroscopy (NMR) visible lipids are a well-documented sign of treatment response in cancers. Lipids in cytoplasmic lipid droplets (LDs) are the main contributors to the NMR lipid signals. Two human primitive neuroectodermal tumour cell lines with different sensitivities to cisplatin treatment were studied. Increases in NMR visible saturated and unsaturated lipids in cisplatin treated DAOY cells were associated with the accumulation of LDs prior to DNA fragmentation due to apoptosis. An increase in unsaturated fatty acids (UFAs) was detected in isolated LDs from DAOY cells, in contrast to a slight decrease in UFAs in lipid extracts from whole cells. Oleic acid and linoleic acid were identified as the accumulating UFAs in LDs by heteronuclear single quantum coherence spectroscopy (HSQC). 1H NMR lipids in non-responding PFSK-1 cells were unchanged by exposure to 10 μM cisplatin. These findings support the potential of NMR detectable UFAs to serve as a non-invasive marker of tumour cell response to treatment.
PMCID: PMC3651531  PMID: 23678346
Lipid droplets; 1H NMR; Isolation; Cisplatin
16.  MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data 
Nucleic Acids Research  2012;41(Database issue):D781-D786.
MetaboLights ( is the first general-purpose, open-access repository for metabolomics studies, their raw experimental data and associated metadata, maintained by one of the major open-access data providers in molecular biology. Metabolomic profiling is an important tool for research into biological functioning and into the systemic perturbations caused by diseases, diet and the environment. The effectiveness of such methods depends on the availability of public open data across a broad range of experimental methods and conditions. The MetaboLights repository, powered by the open source ISA framework, is cross-species and cross-technique. It will cover metabolite structures and their reference spectra as well as their biological roles, locations, concentrations and raw data from metabolic experiments. Studies automatically receive a stable unique accession number that can be used as a publication reference (e.g. MTBLS1). At present, the repository includes 15 submitted studies, encompassing 93 protocols for 714 assays, and span over 8 different species including human, Caenorhabditis elegans, Mus musculus and Arabidopsis thaliana. Eight hundred twenty-seven of the metabolites identified in these studies have been mapped to ChEBI. These studies cover a variety of techniques, including NMR spectroscopy and mass spectrometry.
PMCID: PMC3531110  PMID: 23109552
17.  MetaboLights: towards a new COSMOS of metabolomics data management 
Metabolomics  2012;8(5):757-760.
Exciting funding initiatives are emerging in Europe and the US for metabolomics data production, storage, dissemination and analysis. This is based on a rich ecosystem of resources around the world, which has been build during the past ten years, including but not limited to resources such as MassBank in Japan and the Human Metabolome Database in Canada. Now, the European Bioinformatics Institute has launched MetaboLights, a database for metabolomics experiments and the associated metadata ( It is the first comprehensive, cross-species, cross-platform metabolomics database maintained by one of the major open access data providers in molecular biology. In October, the European COSMOS consortium will start its work on Metabolomics data standardization, publication and dissemination workflows. The NIH in the US is establishing 6–8 metabolomics services cores as well as a national metabolomics repository. This communication reports about MetaboLights as a new resource for Metabolomics research, summarises the related developments and outlines how they may consolidate the knowledge management in this third large omics field next to proteomics and genomics.
PMCID: PMC3465651  PMID: 23060735
Metabolomics; Databases; ISA-Tab; ISA commons
18.  Toward interoperable bioscience data 
Nature genetics  2012;44(2):121-126.
To make full use of research data, the bioscience community needs to adopt technologies and reward mechanisms that support interoperability and promote the growth of an open ‘data commoning’ culture. Here we describe the prerequisites for data commoning and present an established and growing ecosystem of solutions using the shared ‘Investigation-Study-Assay’ framework to support that vision.
PMCID: PMC3428019  PMID: 22281772
19.  Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue – a GC-TOFMS based metabolomics study 
BMC Genomics  2012;13:334.
Changes in energy metabolism of the cells are common to many kinds of tumors and are considered a hallmark of cancer. Gas chromatography followed by time-of-flight mass spectrometry (GC-TOFMS) is a well-suited technique to investigate the small molecules in the central metabolic pathways. However, the metabolic changes between invasive carcinoma and normal breast tissues were not investigated in a large cohort of breast cancer samples so far.
A cohort of 271 breast cancer and 98 normal tissue samples was investigated using GC-TOFMS-based metabolomics. A total number of 468 metabolite peaks could be detected; out of these 368 (79%) were significantly changed between cancer and normal tissues (p<0.05 in training and validation set). Furthermore, 13 tumor and 7 normal tissue markers were identified that separated cancer from normal tissues with a sensitivity and a specificity of >80%. Two-metabolite classifiers, constructed as ratios of the tumor and normal tissues markers, separated cancer from normal tissues with high sensitivity and specificity. Specifically, the cytidine-5-monophosphate / pentadecanoic acid metabolic ratio was the most significant discriminator between cancer and normal tissues and allowed detection of cancer with a sensitivity of 94.8% and a specificity of 93.9%.
For the first time, a comprehensive metabolic map of breast cancer was constructed by GC-TOF analysis of a large cohort of breast cancer and normal tissues. Furthermore, our results demonstrate that spectrometry-based approaches have the potential to contribute to the analysis of biopsies or clinical tissue samples complementary to histopathology.
PMCID: PMC3430598  PMID: 22823888
Breast cancer; Metabolomics; Gas chromatography; Mass spectrometry; Cancer detection
20.  Lipocalin Prostaglandin D Synthase and PPARγ2 Coordinate to Regulate Carbohydrate and Lipid Metabolism In Vivo 
PLoS ONE  2012;7(7):e39512.
Mice lacking Peroxisome Proliferator-Activated Receptor γ2 (PPARγ2) have unexpectedly normal glucose tolerance and mild insulin resistance. Mice lacking PPARγ2 were found to have elevated levels of Lipocalin prostaglandin D synthase (L-PGDS) expression in BAT and subcutaneous white adipose tissue (WAT). To determine if induction of L-PGDS was compensating for a lack of PPARγ2, we crossed L-PGDS KO mice to PPARγ2 KO mice to generate Double Knock Out mice (DKO). Using DKO mice we demonstrated a requirement of L-PGDS for maintenance of subcutaneous WAT (scWAT) function. In scWAT, DKO mice had reduced expression of thermogenic genes, the de novo lipogenic program and the lipases ATGL and HSL. Despite the reduction in markers of lipolysis in scWAT, DKO mice had a normal metabolic rate and elevated serum FFA levels compared to L-PGDS KO alone. Analysis of intra-abdominal white adipose tissue (epididymal WAT) showed elevated expression of mRNA and protein markers of lipolysis in DKO mice, suggesting that DKO mice may become more reliant on intra-abdominal WAT to supply lipid for oxidation. This switch in depot utilisation from subcutaneous to epididymal white adipose tissue was associated with a worsening of whole organism metabolic function, with DKO mice being glucose intolerant, and having elevated serum triglyceride levels compared to any other genotype. Overall, L-PGDS and PPARγ2 coordinate to regulate carbohydrate and lipid metabolism.
PMCID: PMC3390315  PMID: 22792179
21.  Metabolomic and Lipidomic Analysis of the Heart of Peroxisome Proliferator-Activated Receptor-γ Coactivator 1-β Knock Out Mice on a High Fat Diet 
Metabolites  2012;2(2):366-381.
The peroxisome proliferator-activated receptor-γ coactivators (PGC-1) are transcriptional coactivators with an important role in mitochondrial biogenesis and regulation of genes involved in the electron transport chain and oxidative phosphorylation in oxidative tissues including cardiac tissue. These coactivators are thought to play a key role in the development of obesity, type 2 diabetes and the metabolic syndrome. In this study we have used a combined metabolomic and lipidomic analysis of cardiac tissue from the PGC-1β null mouse to examine the effects of a high fat diet on this organ. Multivariate statistics readily separated tissue from PGC-1β null mice from their wild type controls either in gender specific models or in combined datasets. This was associated with an increase in creatine and a decrease in taurine in the null mouse, and an increase in myristic acid and a reduction in long chain polyunsaturated fatty acids for both genders. The most profound changes were detected by liquid chromatography mass spectrometry analysis of intact lipids with the tissue from the null mouse having a profound increase in a number of triglycerides. The metabolomic and lipodomic changes indicate PGC-1β has a profound influence on cardiac metabolism.
PMCID: PMC3901207  PMID: 24957515
metabolic syndrome; obesity; peroxisome proliferator activated receptors; Peroxisome proliferator-activated receptor-γ coactivator 1-beta; functional genomics
22.  A metabolomic strategy defines the regulation of lipid content and global metabolism by Δ9 desaturases in Caenorhabditis elegans 
BMC Genomics  2012;13:36.
Caenorhabditis elegans provides a genetically tractable model organism to investigate the network of genes involved in fat metabolism and how regulation is perturbed to produce the complex phenotype of obesity. C. elegans possess the full range of desaturases, including the Δ9 desaturases expressed by fat-5, fat-6 and fat-7. They regulate the biosynthesis of monounsaturated fatty acids, used for the synthesis of lipids including phospholipids, triglycerides and cholesteryl esters.
Liquid chromatography mass spectrometry (LC-MS), gas chromatography mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy were used to define the metabolome of all the possible knock-outs for the Δ9 desaturases, including for the first time intact lipids. Despite the genes having similar enzymatic roles, excellent discrimination was achievable for all single and viable double mutants highlighting the distinctive roles of fat-6 and fat-7, both expressing steroyl-CoA desaturases. The metabolomic changes extend to aqueous metabolites demonstrating the influence Δ9 desaturases have on regulating global metabolism and highlighting how comprehensive metabolomics is more discriminatory than classically used dyes for fat staining.
The propagation of metabolic changes across the network of metabolism demonstrates that modification of the Δ9 desaturases places C.elegans into a catabolic state compared with wildtype controls.
PMCID: PMC3398271  PMID: 22264337
23.  The contrasting roles of PPARδ and PPARγ in regulating the metabolic switch between oxidation and storage of fats in white adipose tissue 
Genome Biology  2011;12(8):R75.
The nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and peroxisome proliferator-activated receptor δ (PPARδ) play central roles in regulating metabolism in adipose tissue, as well as being targets for the treatment of insulin resistance. While the role of PPARγ in regulating insulin sensitivity has been well defined, research into PPARδ has been limited until recently due to a scarcity of selective PPARδ agonists.
The metabolic effects of PPARγ and PPARδ activation have been examined in vivo in white adipose tissue from ob/ob mice and in vitro in cultured 3T3-L1 adipocytes using 1H nuclear magnetic resonance spectroscopy and mass spectrometry metabolomics to understand the receptors' contrasting roles. These steady state measurements were supplemented with 13C-stable isotope substrate labeling to assess fluxes, in addition to respirometry and transcriptomic microarray analysis. The metabolic effects of the receptors were readily distinguished, with PPARγ activation characterized by increased fat storage, synthesis and elongation, while PPARδ activation caused increased fatty acid β-oxidation, tricarboxylic acid cycle rate and oxidation of extracellular branch chain amino acids. Stimulated glycolysis and increased fatty acid desaturation were common pathways for the agonists.
PPARγ and PPARδ restore insulin sensitivity through varying mechanisms. PPARδ activation increases total oxidative metabolism in white adipose tissue, a tissue not traditionally thought of as oxidative. However, the increased metabolism of branch chain amino acids may provide a mechanism for muscle atrophy, which has been linked to activation of this nuclear receptor. PPARδ has a role as an anti-obesity target and as an anti-diabetic, and hence may target both the cause and consequences of dyslipidemia.
PMCID: PMC3245615  PMID: 21843327
24.  A Metadata description of the data in "A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human." 
BMC Research Notes  2011;4:272.
Metabolomics is a rapidly developing functional genomic tool that has a wide range of applications in diverse fields in biology and medicine. However, unlike transcriptomics and proteomics there is currently no central repository for the depositing of data despite efforts by the Metabolomics Standard Initiative (MSI) to develop a standardised description of a metabolomic experiment.
In this manuscript we describe how the MSI description has been applied to a published dataset involving the identification of cross-species metabolic biomarkers associated with type II diabetes. The study describes sample collection of urine from mice, rats and human volunteers, and the subsequent acquisition of data by high resolution 1H NMR spectroscopy. The metadata is described to demonstrate how the MSI descriptions could be applied in a manuscript and the spectra have also been made available for the mouse and rat studies to allow others to process the data.
The intention of this manuscript is to stimulate discussion as to whether the MSI description is sufficient to describe the metadata associated with metabolomic experiments and encourage others to make their data available to other researchers.
PMCID: PMC3224567  PMID: 21801423
data standards; metabolomics repository; bioinformatics; NMR spectroscopy
25.  So what have data standards ever done for us? The view from metabolomics 
Genome Medicine  2010;2(6):38.
The standardization of reporting of data promises to revolutionize biology by allowing community access to data generated in laboratories across the globe. This approach has already influenced genomics and transcriptomics. Projects that have previously been viewed as being too big to implement can now be distributed across multiple sites. There are now public databases for gene sequences, transcriptomic profiling and proteomic experiments. However, progress in the metabolomic community has seemed to falter recently, and whereas there are ontologies to describe the metadata for metabolomics there are still no central repositories for the datasets themselves. Here, we examine some of the challenges and potential benefits of further efforts towards data standardization in metabolomics and metabonomics.
PMCID: PMC2905098  PMID: 20587079

Results 1-25 (36)