PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  ArrayExpress update—trends in database growth and links to data analysis tools 
Nucleic Acids Research  2012;41(Database issue):D987-D990.
The ArrayExpress Archive of Functional Genomics Data (http://www.ebi.ac.uk/arrayexpress) is one of three international functional genomics public data repositories, alongside the Gene Expression Omnibus at NCBI and the DDBJ Omics Archive, supporting peer-reviewed publications. It accepts data generated by sequencing or array-based technologies and currently contains data from almost a million assays, from over 30 000 experiments. The proportion of sequencing-based submissions has grown significantly over the last 2 years and has reached, in 2012, 15% of all new data. All data are available from ArrayExpress in MAGE-TAB format, which allows robust linking to data analysis and visualization tools, including Bioconductor and GenomeSpace. Additionally, R objects, for microarray data, and binary alignment format files, for sequencing data, have been generated for a significant proportion of ArrayExpress data.
doi:10.1093/nar/gks1174
PMCID: PMC3531147  PMID: 23193272
2.  Gene Expression Atlas update—a value-added database of microarray and sequencing-based functional genomics experiments 
Nucleic Acids Research  2011;40(Database issue):D1077-D1081.
Gene Expression Atlas (http://www.ebi.ac.uk/gxa) is an added-value database providing information about gene expression in different cell types, organism parts, developmental stages, disease states, sample treatments and other biological/experimental conditions. The content of this database derives from curation, re-annotation and statistical analysis of selected data from the ArrayExpress Archive and the European Nucleotide Archive. A simple interface allows the user to query for differential gene expression either by gene names or attributes or by biological conditions, e.g. diseases, organism parts or cell types. Since our previous report we made 20 monthly releases and, as of Release 11.08 (August 2011), the database supports 19 species, which contains expression data measured for 19 014 biological conditions in 136 551 assays from 5598 independent studies.
doi:10.1093/nar/gkr913
PMCID: PMC3245177  PMID: 22064864
3.  ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments 
Nucleic Acids Research  2010;39(Database issue):D1002-D1004.
The ArrayExpress Archive (http://www.ebi.ac.uk/arrayexpress) is one of the three international public repositories of functional genomics data supporting publications. It includes data generated by sequencing or array-based technologies. Data are submitted by users and imported directly from the NCBI Gene Expression Omnibus. The ArrayExpress Archive is closely integrated with the Gene Expression Atlas and the sequence databases at the European Bioinformatics Institute. Advanced queries provided via ontology enabled interfaces include queries based on technology and sample attributes such as disease, cell types and anatomy.
doi:10.1093/nar/gkq1040
PMCID: PMC3013660  PMID: 21071405
4.  ArrayExpress update—from an archive of functional genomics experiments to the atlas of gene expression 
Nucleic Acids Research  2008;37(Database issue):D868-D872.
ArrayExpress http://www.ebi.ac.uk/arrayexpress consists of three components: the ArrayExpress Repository—a public archive of functional genomics experiments and supporting data, the ArrayExpress Warehouse—a database of gene expression profiles and other bio-measurements and the ArrayExpress Atlas—a new summary database and meta-analytical tool of ranked gene expression across multiple experiments and different biological conditions. The Repository contains data from over 6000 experiments comprising approximately 200 000 assays, and the database doubles in size every 15 months. The majority of the data are array based, but other data types are included, most recently—ultra high-throughput sequencing transcriptomics and epigenetic data. The Warehouse and Atlas allow users to query for differentially expressed genes by gene names and properties, experimental conditions and sample properties, or a combination of both. In this update, we describe the ArrayExpress developments over the last two years.
doi:10.1093/nar/gkn889
PMCID: PMC2686529  PMID: 19015125
5.  MAGETabulator, a suite of tools to support the microarray data format MAGE-TAB 
Bioinformatics  2008;25(2):279-280.
Summary: The MAGE-TAB format for microarray data representation and exchange has been proposed by the microarray community to replace the more complex MAGE-ML format. We present a suite of tools to support MAGE-TAB generation and validation, conversion between existing formats for data exchange, visualization of the experiment designs encoded by MAGE-TAB documents and the mining of such documents for semantic content.
Availability: Software is available from http://tab2mage.sourceforge.net/
Contact: tfrayner@gmail.com
doi:10.1093/bioinformatics/btn617
PMCID: PMC2638998  PMID: 19038988
6.  A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB 
BMC Bioinformatics  2006;7:489.
Background
Sharing of microarray data within the research community has been greatly facilitated by the development of the disclosure and communication standards MIAME and MAGE-ML by the MGED Society. However, the complexity of the MAGE-ML format has made its use impractical for laboratories lacking dedicated bioinformatics support.
Results
We propose a simple tab-delimited, spreadsheet-based format, MAGE-TAB, which will become a part of the MAGE microarray data standard and can be used for annotating and communicating microarray data in a MIAME compliant fashion.
Conclusion
MAGE-TAB will enable laboratories without bioinformatics experience or support to manage, exchange and submit well-annotated microarray data in a standard format using a spreadsheet. The MAGE-TAB format is self-contained, and does not require an understanding of MAGE-ML or XML.
doi:10.1186/1471-2105-7-489
PMCID: PMC1687205  PMID: 17087822

Results 1-6 (6)