Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
3.  Bifurcation control of gait transition in insect locomotion 
BMC Neuroscience  2014;15(Suppl 1):P183.
PMCID: PMC4126363
4.  A Codimension-2 Bifurcation Controlling Endogenous Bursting Activity and Pulse-Triggered Responses of a Neuron Model 
PLoS ONE  2014;9(1):e85451.
The dynamics of individual neurons are crucial for producing functional activity in neuronal networks. An open question is how temporal characteristics can be controlled in bursting activity and in transient neuronal responses to synaptic input. Bifurcation theory provides a framework to discover generic mechanisms addressing this question. We present a family of mechanisms organized around a global codimension-2 bifurcation. The cornerstone bifurcation is located at the intersection of the border between bursting and spiking and the border between bursting and silence. These borders correspond to the blue sky catastrophe bifurcation and the saddle-node bifurcation on an invariant circle (SNIC) curves, respectively. The cornerstone bifurcation satisfies the conditions for both the blue sky catastrophe and SNIC. The burst duration and interburst interval increase as the inverse of the square root of the difference between the corresponding bifurcation parameter and its bifurcation value. For a given set of burst duration and interburst interval, one can find the parameter values supporting these temporal characteristics. The cornerstone bifurcation also determines the responses of silent and spiking neurons. In a silent neuron with parameters close to the SNIC, a pulse of current triggers a single burst. In a spiking neuron with parameters close to the blue sky catastrophe, a pulse of current temporarily silences the neuron. These responses are stereotypical: the durations of the transient intervals–the duration of the burst and the duration of latency to spiking–are governed by the inverse-square-root laws. The mechanisms described here could be used to coordinate neuromuscular control in central pattern generators. As proof of principle, we construct small networks that control metachronal-wave motor pattern exhibited in locomotion. This pattern is determined by the phase relations of bursting neurons in a simple central pattern generator modeled by a chain of oscillators.
PMCID: PMC3908860  PMID: 24497927
7.  High Prevalence of Multistability of Rest States and Bursting in a Database of a Model Neuron 
PLoS Computational Biology  2013;9(3):e1002930.
Flexibility in neuronal circuits has its roots in the dynamical richness of their neurons. Depending on their membrane properties single neurons can produce a plethora of activity regimes including silence, spiking and bursting. What is less appreciated is that these regimes can coexist with each other so that a transient stimulus can cause persistent change in the activity of a given neuron. Such multistability of the neuronal dynamics has been shown in a variety of neurons under different modulatory conditions. It can play either a functional role or present a substrate for dynamical diseases. We considered a database of an isolated leech heart interneuron model that can display silent, tonic spiking and bursting regimes. We analyzed only the cases of endogenous bursters producing functional half-center oscillators (HCOs). Using a one parameter (the leak conductance ()) bifurcation analysis, we extended the database to include silent regimes (stationary states) and systematically classified cases for the coexistence of silent and bursting regimes. We showed that different cases could exhibit two stable depolarized stationary states and two hyperpolarized stationary states in addition to various spiking and bursting regimes. We analyzed all cases of endogenous bursters and found that 18% of the cases were multistable, exhibiting coexistences of stationary states and bursting. Moreover, 91% of the cases exhibited multistability in some range of . We also explored HCOs built of multistable neuron cases with coexisting stationary states and a bursting regime. In 96% of cases analyzed, the HCOs resumed normal alternating bursting after one of the neurons was reset to a stationary state, proving themselves robust against this perturbation.
Author Summary
It is often not appreciated that different activity regimes can coexist with each other in a given neuron so that a transient stimulus can cause a persistent change of activity. Such multistability of the neuronal dynamics has in fact been shown in a variety of neurons and can play either a functional role or present a substrate for neurological diseases. We explored the propensity for multistability in a database of a leech heart interneuron model, testing each case (parameter set) in a database for multistability. We found a large proportion of multistable cases, especially the coexistence of silent and bursting regimes. This was a surprising result, since these cells pace the heartbeat of the leech, and the coexistence of silence and bursting could disrupt the functional pattern, threatening the viability of the leech. Analysis of networks of mutually inhibitory multistable neurons, however, showed robustness in maintaining functional activity, suggesting that the mutually inhibitory coupling can act as a protective mechanism against failures induced by multistability.
PMCID: PMC3591289  PMID: 23505348
9.  Bistability of seizure-like bursting and silence 
BMC Neuroscience  2012;13(Suppl 1):P157.
PMCID: PMC3403640
10.  Dynamics of neuronal bursting 
Journal of Biological Physics  2011;37(3):239-240.
PMCID: PMC3101329  PMID: 22654175
11.  Six Types of Multistability in a Neuronal Model Based on Slow Calcium Current 
PLoS ONE  2011;6(7):e21782.
Multistability of oscillatory and silent regimes is a ubiquitous phenomenon exhibited by excitable systems such as neurons and cardiac cells. Multistability can play functional roles in short-term memory and maintaining posture. It seems to pose an evolutionary advantage for neurons which are part of multifunctional Central Pattern Generators to possess multistability. The mechanisms supporting multistability of bursting regimes are not well understood or classified.
Methodology/Principal Findings
Our study is focused on determining the bio-physical mechanisms underlying different types of co-existence of the oscillatory and silent regimes observed in a neuronal model. We develop a low-dimensional model typifying the dynamics of a single leech heart interneuron. We carry out a bifurcation analysis of the model and show that it possesses six different types of multistability of dynamical regimes. These types are the co-existence of 1) bursting and silence, 2) tonic spiking and silence, 3) tonic spiking and subthreshold oscillations, 4) bursting and subthreshold oscillations, 5) bursting, subthreshold oscillations and silence, and 6) bursting and tonic spiking. These first five types of multistability occur due to the presence of a separating regime that is either a saddle periodic orbit or a saddle equilibrium. We found that the parameter range wherein multistability is observed is limited by the parameter values at which the separating regimes emerge and terminate.
We developed a neuronal model which exhibits a rich variety of different types of multistability. We described a novel mechanism supporting the bistability of bursting and silence. This neuronal model provides a unique opportunity to study the dynamics of networks with neurons possessing different types of multistability.
PMCID: PMC3140973  PMID: 21814554

Results 1-13 (13)