PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (165)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Authors
more »
Year of Publication
1.  Genetic disorders with tau pathology: a review of the literature and report of two patients with tauopathy and positive family histories 
Neuro-degenerative diseases  2015;16(0):12-21.
Background
Tauopathies are a group of neurodegenerative disorders characterized by the pathologic accumulation of hyperphosphorylated and insoluble tau protein within neurons and glia. Although most cases are sporadic, hereditary tauopathies have also been reported.
Summary
In this article, we review genetic disorders in which tau pathology has been reported and present two novel families with primary tauopathies. Mutations in the microtubule-associated protein tau gene (MAPT) cause a small subset of primary tauopathies. Mutations in 21 other genes and a 18q deletion syndrome have also been reported to be associated with tau pathology reminiscent of Alzheimer’s disease, corticobasal degeneration, progressive supranuclear palsy, argyrophilic grain disease, or Pick’s disease. In eight of the 21 genes, tau pathology was only seen in cases with some “specific” mutations. In the remaining genes, tau pathology, often in the form of Alzheimer-type neurofibrillary lesions, was a common finding but was “not mutation-specific”. The probands of the two families were diagnosed with progressive supranuclear palsy based on clinicopathological evaluation. Their family histories were relevant for parkinsonism in three siblings of Family 1 and one brother and the father from Family 2, but these were not autopsy-confirmed. DNA from the brains of the probands from these families was screened for MAPT and leucine-rich repeat kinase 2 gene mutations, but no mutations were identified.
doi:10.1159/000440840
PMCID: PMC4674317  PMID: 26550830
2.  C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins 
Nature neuroscience  2016;19(5):668-677.
Neuronal inclusions of poly(GA), a protein unconventionally translated from G4C2 repeat expansions in C9ORF72, are abundant in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) caused by this mutation. To investigate poly(GA) toxicity, we generated mice that exhibit poly(GA) pathology, neurodegeneration and behavioral abnormalities reminiscent of FTD and ALS. These phenotypes occurred in the absence of TDP-43 pathology and required poly(GA) aggregation. HR23 proteins involved in proteasomal degradation and proteins involved in nucleocytoplasmic transport were sequestered by poly(GA) in these mice. HR23A and HR23B similarly colocalized to poly(GA) inclusions in C9ORF72 expansion carriers. Sequestration was accompanied by an accumulation of ubiquitinated proteins and decreased xeroderma pigmentosum C (XPC) levels in mice, indicative of HR23A and HR23B dysfunction. Restoring HR23B levels attenuated poly(GA) aggregation and rescued poly(GA)-induced toxicity in neuronal cultures. These data demonstrate that sequestration and impairment of nuclear HR23 and nucleocytoplasmic transport proteins is an outcome of, and a contributor to, poly(GA) pathology.
doi:10.1038/nn.4272
PMCID: PMC5138863  PMID: 26998601
3.  Chronic Traumatic Encephalopathy Pathology in a Neurodegenerative Disorders Brain Bank 
Acta neuropathologica  2015;130(6):877-889.
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disorder linked to repetitive traumatic brain injury (TBI) and characterized by deposition of hyperphosphorylated tau at the depths of sulci. We sought to determine the presence of chronic traumatic encephalopathy (CTE) pathology in a brain bank for neurodegenerative disorders for individuals with and without a history of contact sports participation. Available medical records of 1,721 men were reviewed for evidence of past history of injury or participation in contact sports. Subsequently, cerebral cortical samples were processed for tau immunohistochemistry in cases with a documented history of sports exposure as well as age- and disease-matched men and women without such exposure. For cases with available frozen tissue, genetic analysis was performed for variants in APOE, MAPT, and TMEM106B. Immunohistochemistry revealed 21 of 66 former athletes had cortical tau pathology consistent with CTE. CTE pathology was not detected in 198 individuals without exposure to contact sports, including 33 individuals with documented single-incident TBI sustained from falls, motor vehicle accidents, domestic violence, or assaults. Among those exposed to contact sports, those with CTE pathology did not differ from those without CTE pathology with respect to noted clinicopathologic features. There were no significant differences in genetic variants for those with CTE pathology, but we observed a slight increase in MAPT H1 haplotype, and there tended to be fewer homozygous carriers of the protective TMEM106B rs3173615 minor allele in those with sports exposure and CTE pathology compared to those without CTE pathology. In conclusion, this study has identified a small, yet significant, subset of individuals with neurodegenerative disorders and concomitant CTE pathology. CTE pathology was only detected in individuals with documented participation in contact sports. Exposure to contact sports was the greatest risk factor for CTE pathology. Future studies addressing clinical correlates of CTE pathology are needed.
doi:10.1007/s00401-015-1502-4
PMCID: PMC4655127  PMID: 26518018
chronic traumatic encephalopathy; traumatic brain injury; sports; microtubule-associated protein tau; brain bank
4.  Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72 
Acta neuropathologica  2015;130(6):863-876.
The loss of chromosome 9 open reading frame 72 (C9ORF72) expression, associated with C9ORF72 repeat expansions, has not been examined systematically. Three C9ORF72 transcript variants have been described thus far; the GGGGCC repeat is located between two non-coding exons (exon 1a and exon 1b) in the promoter region of transcript variant 2 (NM_018325.4) or in the first intron of variant 1 (NM_145005.6) and variant 3 (NM_001256054.2). We studied C9ORF72 expression in expansion carriers (n = 56) for whom cerebellum and/or frontal cortex was available. Using quantitative real-time PCR and digital molecular barcoding techniques, we assessed total C9ORF72 transcripts, variant 1, variant 2, variant 3, and intron containing transcripts [upstream of the expansion (intron 1a) and downstream of the expansion (intron 1b)]; the latter were correlated with levels of poly(GP) and poly(GA) proteins aberrantly translated from the expansion as measured by immunoassay (n = 50). We detected a decrease in expansion carriers as compared to controls for total C9ORF72 transcripts, variant 1, and variant 2: the strongest association was observed for variant 2 (quantitative real-time PCR cerebellum: median 43 %, p = 1.26e-06, and frontal cortex: median 58 %, p = 1.11e-05; digital molecular barcoding cerebellum: median 31 %, p = 5.23e-10, and frontal cortex: median 53 %, p = 5.07e-10). Importantly, we revealed that variant 1 levels greater than the 25th percentile conferred a survival advantage [digital molecular barcoding cerebellum: hazard ratio (HR) 0.31, p = 0.003, and frontal cortex: HR 0.23, p = 0.0001]. When focusing on intron containing transcripts, analysis of the frontal cortex revealed an increase of potentially truncated transcripts in expansion carriers as compared to controls [digital molecular barcoding frontal cortex (intron 1a): median 272 %, p = 0.003], with the highest levels in patients pathologically diagnosed with frontotemporal lobar degeneration. In the cerebellum, our analysis suggested that transcripts were less likely to be truncated and, excitingly, we discovered that intron containing transcripts were associated with poly(GP) levels [digital molecular barcoding cerebellum (intron 1a): r = 0.33, p = 0.02, and (intron 1b): r = 0.49, p = 0.0004] and poly(GA) levels [digital molecular barcoding cerebellum (intron 1a): r = 0.34, p = 0.02, and (intron 1b): r = 0.38, p = 0.007]. In summary, we report decreased expression of specific C9ORF72 transcripts and provide support for the presence of truncated transcripts as well as pre-mRNAs that may serve as templates for RAN translation. We further show that higher C9ORF72 levels may have beneficial effects, which warrants caution in the development of new therapeutic approaches.
doi:10.1007/s00401-015-1480-6
PMCID: PMC4655160  PMID: 26437865
C9ORF72; Frontotemporal dementia; Frontotemporal lobar degeneration; Motor neuron disease; Amyotrophic lateral sclerosis; Disease modifier
5.  Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction 
PLoS ONE  2016;11(11):e0165112.
Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson’s disease, Lewy body disease and Alzheimer’s disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L), which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson’s disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may reflect the limitations of these tests used and the sample sizes, olfactory dysfunction appears to be associated with the inability to identify odors reliably and consistently, not with the loss of an ability to identify specific odors. Irreproducibility in odor identification appears to be a non-disease-specific, general feature of olfactory dysfunction that is accelerated or accentuated in neurodegenerative disease. It may reflect a fundamental organizational principle of the olfactory system, which is more “error-prone” than other sensory systems.
doi:10.1371/journal.pone.0165112
PMCID: PMC5113898  PMID: 27855167
6.  Role for the microtubule-associated protein tau variant p.A152T in risk of α-synucleinopathies 
Neurology  2015;85(19):1680-1686.
Objective:
To assess the importance of MAPT variant p.A152T in the risk of synucleinopathies.
Methods:
In this case-control study, we screened a large global series of patients and controls, and assessed associations between p.A152T and disease risk. We included 3,229 patients with clinical Parkinson disease (PD), 442 with clinical dementia with Lewy bodies (DLB), 181 with multiple system atrophy (MSA), 832 with pathologically confirmed Lewy body disease (LBD), and 2,456 healthy controls.
Results:
The minor allele frequencies (MAF) in clinical PD cases (0.28%) and in controls (0.2%) were not found to be significantly different (odds ratio [OR] 1.37, 95% confidence interval [CI] 0.63–2.98, p = 0.42). However, a significant association was observed with clinical DLB (MAF 0.68%, OR 5.76, 95% CI 1.62–20.51, p = 0.007) and LBD (MAF 0.42%, OR 3.55, 95% CI 1.04–12.17, p = 0.04). Additionally, p.A152T was more common in patients with MSA compared to controls (MAF 0.55%, OR 4.68, 95% CI 0.85–25.72, p = 0.08) but this was not statistically significant and therefore should be interpreted with caution.
Conclusions:
Overall, our findings suggest that MAPT p.A152T is a rare low penetrance variant likely associated with DLB that may be influenced by coexisting LBD and AD pathology. Given the rare nature of the variant, further studies with greater sample size are warranted and will help to fully explain the role of p.A152T in the pathogenesis of the synucleinopathies.
doi:10.1212/WNL.0000000000001946
PMCID: PMC4653108  PMID: 26333800
7.  A Novel Tau Mutation in Exon 12, p.Q336H, Causes Hereditary Pick Disease 
Pick disease (PiD) is a frontotemporal lobar degeneration with distinctive neuronal inclusions (Pick bodies) that are enriched in 3-repeat (3R) tau. Although mostly sporadic, mutations in the tau gene (MAPT) have been reported. We screened 24 cases of neuropathologically confirmed PiD for MAPT mutations and found a novel mutation (c.1008G>C, p.Q336H) in one patient. Pathogenicity was confirmed on microtubule assembly and tau filament formation assays. The patient was compared to sporadic PiD and PiD associated with MAPT mutations from a review of the literature. The patient had behavioral changes at 55 years of age, followed by reduced verbal fluency, parkinsonism and death at 63 years of age. His mother and maternal uncle had similar symptoms. Recombinant tau with p.Q336H mutation formed filaments faster than wild type tau, especially with 3R tau. It also promoted more microtubule assembly than wild type tau. We conclude that mutations in MAPT, including p.Q336H, can be associated with clinical, pathologic, and biochemical features that are similar to those in sporadic PiD. The pathomechanism of p.Q336H, and another previously reported variant at the same codon (p.Q336R), appears to be unique to MAPT mutations in that they not only predispose to abnormal tau filament formation but also facilitate microtubule assembly in a 3R tau-dependent manner.
doi:10.1097/NEN.0000000000000248
PMCID: PMC4607649  PMID: 26426266
Dementia; Frontotemporal dementia; FTDP-17; FTLD-tau; Pick disease; Tau protein; Tau gene
8.  Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts 
Objective:
To determine the prevalence of autoimmune disease in symptomatic C9ORF72 (C9) mutation carriers and frontotemporal dementia with motor neuron disease (FTD/MND) cohorts.
Methods:
In this case-control study, we reviewed the clinical histories of 66 patients with FTD/MND and 57 symptomatic C9 carriers (24 overlapping cases), a total of 99 charts, for history of autoimmune disease. The prevalence of autoimmune disease in C9 and FTD/MND cohorts was determined by χ2 and Fisher exact comparisons between the combined C9 and FTD/MND group with normal control, Alzheimer disease, and progressive supranuclear palsy cohorts, as well as comparisons within C9 and FTD/MND cohorts.
Results:
Our combined C9 and FTD/MND cohort has a 12% prevalence of nonthyroid autoimmune disease. The prevalence of nonthyroid autoimmune disease in C9 and FTD/MND is similar to the rates in previously detailed progranulin and semantic variant primary progressive aphasia cohorts and elevated in comparison to previously collected normal control and typical Alzheimer disease cohorts, as well as a newly screened progressive supranuclear palsy cohort. Furthermore, the types of autoimmune disease in this combined C9 and FTD/MND cohort cluster within the same 3 categories previously described in progranulin and semantic variant primary progressive aphasia: inflammatory arthritides, cutaneous conditions, and gastrointestinal disorders.
Conclusions:
The association between selective autoimmune disease and neurodegenerative disorders unified by the underlying pathology frontotemporal lobar degeneration with TDP-43–positive inclusions (FTLD-TDP) extends to C9 and FTD/MND cohorts, providing further evidence that select autoimmune inflammation may be intrinsically linked to FTLD-TDP pathophysiology.
doi:10.1212/NXI.0000000000000301
PMCID: PMC5087253  PMID: 27844039
9.  A truncating SOD1 mutation, p.Gly141X, is associated with clinical and pathologic heterogeneity, including frontotemporal lobar degeneration 
Acta neuropathologica  2015;130(1):145-157.
Amyotrophic lateral sclerosis (ALS) is a degenerative disorder affecting upper and lower motor neurons, but it is increasingly recognized to affect other systems, with cognitive impairment resembling frontotemporal dementia (FTD) in some patients. We report clinical and pathologic findings of a family with ALS due to a truncating mutation, p.Gly141X, in copper/zinc superoxide dismutase (SOD1). The proband presented clinically with FTD and later showed progressive motor neuron disease, while all other family members had early-onset and rapidly progressive ALS without significant cognitive deficits. Pathologic examination of both the proband and her daughter revealed degeneration of corticospinal tracts and motor neurons in brain and spinal cord compatible with ALS. On the other hand, the proband also had neocortical and limbic system degeneration with pleomorphic neuronal cytoplasmic inclusions. Extramotor pathology in her daughter was relatively restricted to the hypothalamus and extrapyramidal system, but not the neocortex. The inclusions in the proband and her daughter were immunoreactive for SOD1, but negative for TAR DNA binding protein of 43 kDa (TDP-43). In the proband, a number of the neocortical inclusions were immunopositive for α-internexin, initially suggesting a diagnosis of atypical FTLD, but there was no evidence of fused in sarcoma (FUS) immunoreactivity, which is often detected in atypical FTLD. Analogous to atypical FTLD, neuronal inclusions had variable co-localization of SOD1 and α-internexin. The current classification of FTLD is based on the major constituent protein: FTLD-tau, FTLD-TDP-43, and FTLD-FUS. The proband in this family indicates that SOD1, while rare, can also be the substrate of FTLD, in addition to the more common presentation of ALS. The explanation for clinical and pathologic heterogeneity of SOD1 mutations, including the p.Gly141X mutation, remains unresolved.
doi:10.1007/s00401-015-1431-2
PMCID: PMC5039014  PMID: 25917047
amyotrophic lateral sclerosis; electron microscopy; frontotemporal lobar degeneration; immunohistochemistry; internexin-alpha; neurofilament; superoxide dismutase 1
10.  A novel tau mutation, p.K317N, causes globular glial tauopathy 
Acta neuropathologica  2015;130(2):199-214.
Globular glial tauopathy (GGT) are 4-repeat tauopathies neuropathologically characterized by tau-positive, globular glial inclusions, including both globular oligodendroglial inclusions (GOI) and globular astrocytic inclusions (GAI). No mutations have been found in 25 of the 30 GGT cases reported in the literature who have been screened for mutations in microtubule associated protein tau (MAPT). In this report, six patients with GGT (four with subtype III and two with subtype I) were screened for MAPT mutations. They included 4 men and 2 women with a mean age at death of 73 years (55–83 years) and mean age at symptomatic onset of 66 years (50–77 years). Disease duration ranged from 5 to 14 years. All were homozygous for the MAPT H1 haplotype. Three patients had a positive family history of dementia, and a novel MAPT mutation (c.951G>C, p.K317N) was identified in one of them, a patient with subtype III. Recombinant tau protein bearing the lysine-to-asparagine substitution at amino acid residue 317 was used to assess functional significance of the variant on microtubule assembly and tau filament formation. Recombinant p.K317N tau had reduced ability to promote tubulin polymerization. Recombinant 3R and 4R tau bearing the p.K317N mutation showed decreased 3R tau and increased 4R tau filament assembly. These results strongly suggest that the p.K317N variant is pathogenic. Sequencing of MAPT should be considered in patients with GGT and a family history of dementia or movement disorder. Since several individuals in our series had a positive family history but no MAPT mutation, genetic factors other than MAPT may play a role in disease pathogenesis.
doi:10.1007/s00401-015-1425-0
PMCID: PMC5039015  PMID: 25900293
FTDP-17; globular glial tauopathy (GGT); hereditary tauopathies; tau biochemistry; tau gene (MAPT)
11.  Bromodomain inhibitors regulate the C9ORF72 locus in ALS 
Experimental neurology  2015;271:241-250.
A hexanucleotide repeat expansion residing within the C9ORF72 gene represents the most common known cause of amyotrophic lateral sclerosis (ALS) and places the disease among a growing family of repeat expansion disorders. The presence of RNA foci, repeat-associated translation products, and sequestration of RNA binding proteins suggests that toxic RNA gain-of-function contributes to pathology while C9ORF72 haploinsufficiency may be an additional pathological factor. One viable therapeutic strategy for treating expansion diseases is the use of small molecule inhibitors of epigenetic modifier proteins to reactivate expanded genetic loci. Indeed, previous studies have established proof of this principle by increasing the drug-induced expression of expanded (and abnormally heterochromatinized) FMR1, FXN and C9ORF72 genes in respective patient cells. While epigenetic modifier proteins are increasingly recognized as druggable targets, there have been few screening strategies to address this avenue of drug discovery in the context of expansion diseases. Here we utilize a semi-high-throughput gene expression based screen to identify siRNAs and small molecule inhibitors of epigenetic modifier proteins that regulate C9ORF72 RNA in patient fibroblasts, lymphocytes and reprogrammed motor neurons. We found that several bromodomain small molecule inhibitors increase the expression of C9ORF72 mRNA and pre-mRNA without affecting repressive epigenetic signatures of expanded C9ORF72 alleles. These data suggest that bromodomain inhibition increases the expression of unexpanded C9ORF72 alleles and may therefore compensate for haploinsufficiency without increasing the production of toxic RNA and protein products, thereby conferring therapeutic value.
doi:10.1016/j.expneurol.2015.06.017
PMCID: PMC4586400  PMID: 26099177
C9ORF72; amyotrophic lateral sclerosis; repeat expansion; bromodomain; BET
13.  TREM2 p.R47H substitution is not associated with dementia with Lewy bodies 
Neurology: Genetics  2016;2(4):e85.
Dementia with Lewy bodies (DLB) is the second leading cause of neurodegenerative dementia in the elderly and is clinically characterized by the presence of cognitive decline, parkinsonism, REM sleep behavior disorder, and visual hallucinations.1,2 At autopsy, α-synuclein–positive Lewy-related pathology is observed throughout the brain. Concomitant Alzheimer disease–related pathology including amyloid plaques and, to a lesser degree, neurofibrillary tangles are often present.2 The clinical characteristics of DLB share overlapping features with Alzheimer disease dementia (AD) and Parkinson disease (PD). A recent genetic association study examining known hits from PD and AD identified variants at both the α-synuclein (SNCA) and APOE loci as influencing the individual risk to DLB.3 These findings would suggest that DLB may be a distinct disease with shared genetic risk factors with PD and AD.
doi:10.1212/NXG.0000000000000085
PMCID: PMC4946771  PMID: 27458607
14.  Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease 
Acta neuropathologica  2015;130(1):77-92.
Frontotemporal lobar degeneration with TAR DNA binding protein 43 inclusions (FTLD-TDP) is the most common pathology associated with frontotemporal dementia (FTD). Repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) and mutations in progranulin (GRN) are the major known genetic causes of FTLD-TDP; however, the genetic etiology in the majority of FTLD-TDP remains unexplained.
In this study, we performed whole-genome sequencing in 104 pathologically confirmed FTLD-TDP patients from the Mayo Clinic brain bank negative for C9ORF72 and GRN mutations and report on the contribution of rare single nucleotide and copy-number variants in 21 known neurodegenerative disease genes. Interestingly, we identified 5 patients (4.8%) with variants in optineurin (OPTN) and TANK-binding kinase 1 (TBK1) that are predicted to be highly pathogenic, including two double mutants. Case A was a compound heterozygote for mutations in OPTN, carrying the p.Q235* nonsense and p.A481V missense mutation in trans, while case B carried a deletion of OPTN exons 13–15 (p.Gly538Glufs*27) and a loss-of-function mutation (p.Arg117*) in TBK1. Cases C–E carried heterozygous missense mutations in TBK1, including the p.Glu696Lys mutation which was previously reported in two amyotrophic lateral sclerosis (ALS) patients and is located in the OPTN binding domain. Quantitative mRNA expression and protein analysis in cerebellar tissue showed a striking reduction of OPTN and/or TBK1 expression in 4 out of 5 patients supporting pathogenicity in these specific patients and suggesting a loss-of-function disease mechanism. Importantly, neuropathologic examination showed FTLD-TDP type A in the absence of motor neuron disease in 3 pathogenic mutation carriers.
In conclusion, we highlight TBK1 as an important cause of pure FTLD-TDP, identify the first OPTN mutations in FTLD-TDP, and suggest a potential oligogenic basis for at least a subset of FTLD-TDP patients. Our data further adds to the growing body of evidence linking ALS and FTD and suggests a key role for the OPTN/TBK1 pathway in these diseases.
doi:10.1007/s00401-015-1436-x
PMCID: PMC4470809  PMID: 25943890
Whole-genome sequencing; FTLD-TDP; OPTN; TBK1; oligogenic mechanism
15.  Prosaposin is a regulator of progranulin levels and oligomerization 
Nature Communications  2016;7:11992.
Progranulin (GRN) loss-of-function mutations leading to progranulin protein (PGRN) haploinsufficiency are prevalent genetic causes of frontotemporal dementia. Reports also indicated PGRN-mediated neuroprotection in models of Alzheimer's and Parkinson's disease; thus, increasing PGRN levels is a promising therapeutic for multiple disorders. To uncover novel PGRN regulators, we linked whole-genome sequence data from 920 individuals with plasma PGRN levels and identified the prosaposin (PSAP) locus as a new locus significantly associated with plasma PGRN levels. Here we show that both PSAP reduction and overexpression lead to significantly elevated extracellular PGRN levels. Intriguingly, PSAP knockdown increases PGRN monomers, whereas PSAP overexpression increases PGRN oligomers, partly through a protein–protein interaction. PSAP-induced changes in PGRN levels and oligomerization replicate in human-derived fibroblasts obtained from a GRN mutation carrier, further supporting PSAP as a potential PGRN-related therapeutic target. Future studies should focus on addressing the relevance and cellular mechanism by which PGRN oligomeric species provide neuroprotection.
Increasing progranulin (PGRN) levels is a promising approach for treating frontotemporal dementia and other neurodegenerative diseases. Here Nicholson et al. show that the prosaposin (PSAP) locus is associated with plasma PGRN levels and demonstrate that PSAP can alter PGRN levels and its oligomerization.
doi:10.1038/ncomms11992
PMCID: PMC4931318  PMID: 27356620
17.  Dominant Frontotemporal Dementia Mutations in 140 Cases of Primary Progressive Aphasia and Speech Apraxia 
Background
Mutations in three genes [chromosome 9 open-reading-frame 72 (C9ORF72); microtubule-associated protein tau (MAPT) and progranulin (GRN)] account for the vast majority of familial, and a proportion of sporadic, frontotemporal dementia (FTD) cases. Progressive apraxia of speech (PAOS) is a type of FTD characterized by speech production deficits without a known cause.
Methods
We therefore assessed for genetic mutations in C9ORF72, MAPT and GRN in 40 prospectively recruited PAOS patients. For comparison, we also assessed these mutations in 100 patients with primary progressive aphasia (PPA), including logopenic PPA (n = 54), nonfluent/agrammatic PPA (n = 17), semantic PPA (n = 16), and unclassifiable PPA (n = 13).
Results
The mean age at onset of PAOS patients was 66.7 years (± 9.3); 50% were women. Ten patients (25%) had ≥1 first-degree relative with a neurodegenerative disease. No mutations were found in any PAOS patient. In comparison, 36% of the PPA patients had a family history and 5 (5%) had a genetic mutation detected: MAPT (n = 0), GRN (n = 3) and C9ORF72 (n = 2).
Conclusions
Although limited by an overrepresentation of logopenic PPA, which frequently predicts Alzheimer’s disease pathology, this study suggests that mutations in the three genes most commonly associated with FTD are not associated with PAOS and are rarely associated with PPA.
doi:10.1159/000375299
PMCID: PMC4879710  PMID: 25765123
Genetics; C9ORF72; MAPT; Progranulin; Apraxia of speech; Semantic dementia; Logopenic progressive aphasia; Progressive nonfluent aphasia; PPA
19.  Brain atrophy over time in genetic and sporadic frontotemporal dementia: a study on 198 serial MRI 
Objective
To determine the utility of longitudinal MRI measurements as potential biomarkers in the main genetic variants of frontotemporal dementia (FTD), including microtubule-associated protein tau (MAPT) and progranulin (GRN) mutations, and C9ORF72 repeat expansions, as well as sporadic FTD.
Methods
In this longitudinal study, 58 subjects were identified that had at least two MRI and MAPT mutations (n=21), GRN mutations (n=11), C9ORF72 repeat expansions (n=11) or sporadic FTD (n=15). A total of 198 serial MRI were analyzed. Rates of whole brain atrophy were calculated using the boundary-shift integral. Regional rates of atrophy were calculated using tensor-based morphometry. Sample size estimates were calculated.
Results
Progressive brain atrophy was observed in all groups, with fastest rates of whole brain atrophy in GRN, followed by sporadic FTD, C9ORF72 and MAPT. All variants showed greatest rates in frontal and temporal lobes, with parietal lobes also strikingly affected in GRN. Regional rates of atrophy across all lobes were greater in GRN compared to the other groups. C9ORF72 showed greater rates of atrophy in left cerebellum and right occipital lobe than MAPT, and sporadic FTD showed greater rates in anterior cingulate than C9ORF72 and MAPT. Sample size estimates were lowest using temporal lobe rates in GRN, ventricular rates in MAPT and C9ORF72, and whole brain rates in sporadic FTD.
Conclusion
These data support the utility of using rates of atrophy as outcome measures in future drug trials in FTD and show that different imaging biomarkers may offer advantages in the different variants of FTD.
doi:10.1111/ene.12675
PMCID: PMC4390434  PMID: 25683866
MRI; longitudinal; frontotemporal dementia; genetics; tensor-based morphometry
20.  Network-driven plasma proteomics expose molecular changes in the Alzheimer’s brain 
Background
Biological pathways that significantly contribute to sporadic Alzheimer’s disease are largely unknown and cannot be observed directly. Cognitive symptoms appear only decades after the molecular disease onset, further complicating analyses. As a consequence, molecular research is often restricted to late-stage post-mortem studies of brain tissue. However, the disease process is expected to trigger numerous cellular signaling pathways and modulate the local and systemic environment, and resulting changes in secreted signaling molecules carry information about otherwise inaccessible pathological processes.
Results
To access this information we probed relative levels of close to 600 secreted signaling proteins from patients’ blood samples using antibody microarrays and mapped disease-specific molecular networks. Using these networks as seeds we then employed independent genome and transcriptome data sets to corroborate potential pathogenic pathways.
Conclusions
We identified Growth-Differentiation Factor (GDF) signaling as a novel Alzheimer’s disease-relevant pathway supported by in vivo and in vitro follow-up experiments, demonstrating the existence of a highly informative link between cellular pathology and changes in circulatory signaling proteins.
Electronic supplementary material
The online version of this article (doi:10.1186/s13024-016-0095-2) contains supplementary material, which is available to authorized users.
doi:10.1186/s13024-016-0095-2
PMCID: PMC4845325  PMID: 27112350
21.  CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia 
Nature Communications  2016;7:11253.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are overlapping, fatal neurodegenerative disorders in which the molecular and pathogenic basis remains poorly understood. Ubiquitinated protein aggregates, of which TDP-43 is a major component, are a characteristic pathological feature of most ALS and FTD patients. Here we use genome-wide linkage analysis in a large ALS/FTD kindred to identify a novel disease locus on chromosome 16p13.3. Whole-exome sequencing identified a CCNF missense mutation at this locus. Interrogation of international cohorts identified additional novel CCNF variants in familial and sporadic ALS and FTD. Enrichment of rare protein-altering CCNF variants was evident in a large sporadic ALS replication cohort. CCNF encodes cyclin F, a component of an E3 ubiquitin–protein ligase complex (SCFCyclin F). Expression of mutant CCNF in neuronal cells caused abnormal ubiquitination and accumulation of ubiquitinated proteins, including TDP-43 and a SCFCyclin F substrate. This implicates common mechanisms, linked to protein homeostasis, underlying neuronal degeneration.
Ian Blair and colleagues use genome-wide linkage analysis and whole exome sequencing to identify mutations in the CCNF gene in large cohorts of amyotrophic lateral sclerosis and frontotemporal dementia patients. In addition to validating the mutations in international cohorts, the authors also show that mutant CCNF gene product affects ubiquitination and protein degradation in cultured cells.
doi:10.1038/ncomms11253
PMCID: PMC4835537  PMID: 27080313
22.  Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS 
Nature neuroscience  2015;18(8):1175-1182.
Increasing evidence suggests that defective RNA processing contributes to the development of amyotrophic lateral sclerosis (ALS). This may be especially true for ALS caused by a repeat expansion in C9orf72 (c9ALS), in which the accumulation of RNA foci and dipeptide-repeat proteins are expected to modify RNA metabolism. We report extensive alternative splicing (AS) and alternative polyadenylation (APA) defects in the cerebellum of c9ALS cases (8,224 AS, 1,437 APA), including changes in ALS-associated genes (e.g. ATXN2 and FUS), and cases of sporadic ALS (sALS; 2,229 AS, 716 APA). Furthermore, hnRNPH and other RNA-binding proteins are predicted as potential regulators of cassette exon AS events for both c9ALS and sALS. Co-expression and gene-association network analyses of gene expression and AS data revealed divergent pathways associated with c9ALS and sALS.
doi:10.1038/nn.4065
PMCID: PMC4830686  PMID: 26192745
23.  Frontotemporal dementia: a bridge between dementia and neuromuscular disease 
The concept that frontotemporal dementia (FTD) is a purely “cortical” dementia has largely been refuted by the recognition of its close association with motor neuron disease, and the identification of transactive response DNA-binding protein 43 (TDP-43) as a major pathological substrate underlying both diseases. Genetic findings have transformed this field and revealed connections between disorders that were previous thought clinically unrelated. The discovery of the C9ORF72 locus as responsible for majority of hereditary FTD, ALS and FTD-ALS cases and the understanding that repeat-containing RNA plays a crucial role in pathogenesis of both disorders has paved the way for development of potential biomarkers and therapeutic targets for these devastating diseases. In this review, we summarize the historical aspects leading up to our current understanding of the genetic, clinical and neuropathological overlap between FTD and ALS, and include brief discussions on chronic traumatic encephalopathy (CTE) given its association with TDP-43 pathology, increased dementia risk and reports of ALS in CTE patients. Additionally we describe other genetic associations between dementia and neuromuscular disease, such as inclusion body myositis with Paget’s disease and frontotemporal dementia (IBMPFD).
doi:10.1111/nyas.12638
PMCID: PMC4399703  PMID: 25557955
frontotemporal dementia; amyotrophic lateral sclerosis; motor neuron disease; neuromuscular disease; C9ORF72
24.  Clinical and neuroimaging biomarkers of amyloid-negative logopenic primary progressive aphasia 
Brain and language  2015;142:45-53.
Logopenic primary progressive aphasia (lvPPA) is a progressive language disorder characterized by anomia, difficulty repeating complex sentences, and phonological errors. The majority, although not all, lvPPA patients have underlying Alzheimer’s disease. We aimed to determine whether clinical or neuroimaging features differ according to the deposition of Aβ on Pittsburgh-compound B PET in lvPPA. Clinical features, patterns of atrophy on MRI, hypometabolism on FDG-PET, and white matter tract degeneration were compared between six PiB-negative and 20 PiB-positive lvPPA patients. PiB-negative patients showed more asymmetric left-sided patterns of atrophy, hypometabolism and white matter tract degeneration, with greater left anteromedial temporal and medial prefrontal involvement, than PiB-positive patients. PiB-positive patients showed greater involvement of right temporoparietal and frontal lobes. There was very little evidence for clinical differences between the groups. Strikingly asymmetric neuroimaging findings with relatively preserved right hemisphere may provide clues that AD pathology is absent in lvPPA.
doi:10.1016/j.bandl.2015.01.009
PMCID: PMC4380294  PMID: 25658633
logopenic; primary progressive aphasia; Pittsburgh Compound B; magnetic resonance imaging; FDG-PET; progranulin; beta-amyloid
25.  Clinical presentation of a patient with SLC20A2 and THAP1 deletions: differential diagnosis of oromandibular dystonia 
Parkinsonism & related disorders  2015;21(3):329-331.
doi:10.1016/j.parkreldis.2014.12.024
PMCID: PMC4408548  PMID: 25609077
SLC20A2; THAP1; oromandibular dystonia; basal ganglia calcification; IBGC3; genetic testing

Results 1-25 (165)