PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
2.  Functional Analysis of Centrosomal Kinase Substrates in Drosophila melanogaster Reveals a New Function of the Nuclear Envelope Component Otefin in Cell Cycle Progression 
Molecular and Cellular Biology  2012;32(17):3554-3569.
Phosphorylation is one of the key mechanisms that regulate centrosome biogenesis, spindle assembly, and cell cycle progression. However, little is known about centrosome-specific phosphorylation sites and their functional relevance. Here, we identified phosphoproteins of intact Drosophila melanogaster centrosomes and found previously unknown phosphorylation sites in known and unexpected centrosomal components. We functionally characterized phosphoproteins and integrated them into regulatory signaling networks with the 3 important mitotic kinases, cdc2, polo, and aur, as well as the kinase CkIIβ. Using a combinatorial RNA interference (RNAi) strategy, we demonstrated novel functions for P granule, nuclear envelope (NE), and nuclear proteins in centrosome duplication, maturation, and separation. Peptide microarrays confirmed phosphorylation of identified residues by centrosome-associated kinases. For a subset of phosphoproteins, we identified previously unknown centrosome and/or spindle localization via expression of tagged fusion proteins in Drosophila SL2 cells. Among those was otefin (Ote), an NE protein that we found to localize to centrosomes. Furthermore, we provide evidence that it is phosphorylated in vitro at threonine 63 (T63) through Aurora-A kinase. We propose that phosphorylation of this site plays a dual role in controlling mitotic exit when phosphorylated while dephosphorylation promotes G2/M transition in Drosophila SL2 cells.
doi:10.1128/MCB.00814-12
PMCID: PMC3422010  PMID: 22751930
3.  Peptidome Analysis of Cerebrospinal Fluid by LC-MALDI MS 
PLoS ONE  2012;7(8):e42555.
We report on the analysis of endogenous peptides in cerebrospinal fluid (CSF) by mass spectrometry. A method was developed for preparation of peptide extracts from CSF. Analysis of the extracts by offline LC-MALDI MS resulted in the detection of 3,000–4,000 peptide-like features. Out of these, 730 peptides were identified by MS/MS. The majority of these peptides have not been previously reported in CSF. The identified peptides were found to originate from 104 proteins, of which several have been reported to be involved in different disorders of the central nervous system. These results support the notion that CSF peptidomics may be viable complement to proteomics in the search of biomarkers of CNS disorders.
doi:10.1371/journal.pone.0042555
PMCID: PMC3412831  PMID: 22880031
4.  Structural details and composition of Trichomonas vaginalis lipophosphoglycan in relevance to the epithelial immune function 
Glycoconjugate journal  2008;26(1):3-17.
Trichomonas vaginalis causes the most common non-viral sexually transmitted infection linked to increased risk of premature birth, cervical cancer and HIV. This study defines molecular domains of the parasite surface glycol-conjugate lipophosphoglycan (LPG) with distinct functions in the host immunoinflammatory response. The ceramide phospho-inositol glycan core (CPI-GC) released by mild acid had Mr of ~8,700 Da determined by MALDI-TOF MS. Rha, GlcN, Gal and Xyl and small amounts of GalN and Glc were found in CPI-GC. N-acetyllactosamine repeats were identified by endo-β-galactosidase treatment followed by MALDI-MS and MS/MS and capLC/ESI-MS/MS analyses. Mild acid hydrolysis led to products rich in internal deoxyhexose residues. The CPI-GC induced chemokine production, NF-κB and extracellular signal-regulated kinase (ERK)1/2 activation in human cervicovaginal epithelial cells, but neither the released saccharide components nor the lipid-devoid LPG showed these activities. These results suggest a dominant role for CPI-GC in the pathogenic epithelial response to trichomoniasis.
doi:10.1007/s10719-008-9157-1
PMCID: PMC2637367  PMID: 18604640
Trichomonad LPG; Mass spectrometry; Cytokines; NF-κB; ERK; Vaginal mucosal immunity

Results 1-4 (4)