PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (156)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Authors
more »
Year of Publication
more »
1.  C9ORF72 repeat expansions in cases with previously identified pathogenic mutations 
Neurology  2013;81(15):1332-1341.
Objective:
To identify potential genetic modifiers contributing to the phenotypic variability that is detected in patients with repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), we investigated the frequency of these expansions in a cohort of 334 subjects previously found to carry mutations in genes known to be associated with a spectrum of neurodegenerative diseases.
Methods:
A 2-step protocol, with a fluorescent PCR and a repeat-primed PCR, was used to determine the presence of hexanucleotide expansions in C9ORF72. For one double mutant, we performed Southern blots to assess expansion sizes, and immunohistochemistry to characterize neuropathology.
Results:
We detected C9ORF72 repeat expansions in 4 of 334 subjects (1.2% [or 1.8% of 217 families]). All these subjects had behavioral phenotypes and also harbored well-known pathogenic mutations in either progranulin (GRN: p.C466LfsX46, p.R493X, p.C31LfsX35) or microtubule-associated protein tau (MAPT: p.P301L). Southern blotting of one double mutant with a p.C466LfsX46 GRN mutation demonstrated a long repeat expansion in brain (>3,000 repeats), and immunohistochemistry showed mixed neuropathology with characteristics of both C9ORF72 expansions and GRN mutations.
Conclusions:
Our findings indicate that co-occurrence of 2 evidently pathogenic mutations could contribute to the pleiotropy that is detected in patients with C9ORF72 repeat expansions. These findings suggest that patients with known mutations should not be excluded from further studies, and that genetic counselors should be aware of this phenomenon when advising patients and their family members.
doi:10.1212/WNL.0b013e3182a8250c
PMCID: PMC3806926  PMID: 24027057
2.  Brain Injury Biomarkers Are Not Dependent on β-amyloid in Normal Elderly 
Annals of neurology  2013;73(4):472-480.
Background
The new criteria for preclinical Alzheimer’s Disease (AD) proposed 3 stages: abnormal levels of β-amyloid (stage 1); stage 1 plus evidence of brain injury (stage 2); and stage 2 plus subtle cognitive changes (stage 3). However, a large group of subjects with normal β-amyloid biomarkers have evidence of brain injury; we labeled them as “suspected non-Alzheimer pathway” (sNAP) group. The characteristics of the sNAP group are poorly understood.
Methods
Using the preclinical AD classification, 430 cognitively normal subjects from the Mayo Clinic Study of Aging who underwent brain MR, 18fluorodeoxyglucose (FDG) and Pittsburgh compound B (PiB) positron emission tomography (PET) were evaluated with FDG PET regional volumetrics, MR regional brain volumetrics, white matter hyperintensity (WMH) volume and number of infarcts. We examined cross-sectional associations across AD preclinical stages, those with all biomarkers normal, and the sNAP group.
Results
The sNAP group had a lower proportion (14%) with APOE ε4 genotype than the preclinical AD stages 2 + 3. The sNAP group did not show any group differences compared to stages 2 + 3 of the preclinical AD group on measures of FDG PET regional hypometabolism, MR regional brain volume loss, cerebrovascular imaging lesions, vascular risk factors, imaging changes associated with α-synucleinopathy or physical findings of parkinsonism.
Conclusions
Cognitively normal persons with brain injury biomarker abnormalities, with or without abnormal levels of β-amyloid, were indistinguishable on a variety of imaging markers, clinical features and risk factors. The initial appearance of brain injury biomarkers that occurs in cognitively normal persons with preclinical AD may not depend on β-amyloidosis.
doi:10.1002/ana.23816
PMCID: PMC3660408  PMID: 23424032
Alzheimer’s disease; PET imaging; MR imaging; Epidemiology
3.  CSF1R mutations link POLD and HDLS as a single disease entity 
Neurology  2013;80(11):1033-1040.
Objective:
Pigmented orthochromatic leukodystrophy (POLD) and hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) are rare neurodegenerative disorders characterized by cerebral white matter abnormalities, myelin loss, and axonal swellings. The striking overlap of clinical and pathologic features of these disorders suggested a common pathogenesis; however, no genetic or mechanistic link between POLD and HDLS has been established. Recently, we reported that mutations in the colony-stimulating factor 1 receptor (CSF1R) gene cause HDLS. In this study, we determined whether CSF1R mutations are also a cause of POLD.
Methods:
We performed sequencing of CSF1R in 2 pathologically confirmed POLD families. For the largest family (FTD368), a detailed case report was provided and brain samples from 2 affected family members previously diagnosed with POLD were re-evaluated to determine whether they had HDLS features. In vitro functional characterization of wild-type and mutant CSF1R was also performed.
Results:
We identified CSF1R mutations in both POLD families: in family 5901, we found c.2297T>C (p.M766T), previously reported by us in HDLS family CA1, and in family FTD368, we identified c.2345G>A (p.R782H), recently reported in a biopsy-proven HDLS case. Immunohistochemical examination in family FTD368 showed the typical neuronal and glial findings of HDLS. Functional analyses of CSF1R mutant p.R782H (identified in this study) and p.M875T (previously observed in HDLS), showed a similar loss of CSF1R autophosphorylation of selected tyrosine residues in the kinase domain for both mutations when compared with wild-type CSF1R.
Conclusions:
We provide the first genetic and mechanistic evidence that POLD and HDLS are a single clinicopathologic entity.
doi:10.1212/WNL.0b013e31828726a7
PMCID: PMC3653204  PMID: 23408870
4.  Brain β-amyloid load approaches a plateau 
Neurology  2013;80(10):890-896.
Objective:
To model the temporal trajectory of β-amyloid accumulation using serial amyloid PET imaging.
Methods:
Participants, aged 70–92 years, were enrolled in either the Mayo Clinic Study of Aging (n = 246) or the Mayo Alzheimer's Disease Research Center (n = 14). All underwent 2 or more serial amyloid PET examinations. There were 205 participants classified as cognitively normal and 55 as cognitively impaired (47 mild cognitive impairment and 8 Alzheimer dementia). We measured baseline amyloid PET-relative standardized uptake values (SUVR) and, for each participant, estimated a slope representing their annual amyloid accumulation rate. We then fit regression models to predict the rate of amyloid accumulation given baseline amyloid SUVR, and evaluated age, sex, clinical group, and APOE as covariates. Finally, we integrated the amyloid accumulation rate vs baseline amyloid PET SUVR association to an amyloid PET SUVR vs time association.
Results:
Rates of amyloid accumulation were low at low baseline SUVR. Rates increased to a maximum at baseline SUVR around 2.0, above which rates declined—reaching zero at baseline SUVR above 2.7. The rate of amyloid accumulation as a function of baseline SUVR had an inverted U shape. Integration produced a sigmoid curve relating amyloid PET SUVR to time. The average estimated time required to travel from an SUVR of 1.5–2.5 is approximately 15 years.
Conclusion:
This roughly 15-year interval where the slope of the amyloid SUVR vs time curve is greatest and roughly linear represents a large therapeutic window for secondary preventive interventions.
doi:10.1212/WNL.0b013e3182840bbe
PMCID: PMC3653215  PMID: 23446680
5.  Frontotemporal Degeneration, the Next Therapeutic Frontier: Molecules and Animal Models for FTD drug development (Part 1 of 2 articles) 
Frontotemporal Degeneration (FTD) is a common cause of dementia for which there are currently no approved therapies. Over the past decade there has been an explosion of knowledge about the biology and clinical features of FTD that has identified a number of promising therapeutic targets as well as animal models in which to develop drugs. The close association of some forms of FTD with neuropathological accumulation of tau protein or increased neuroinflammation due to progranulin protein deficiency suggests that a drug’s success in treating FTD may predict efficacy in more common diseases such as Alzheimer’s disease (AD). A variety of regulatory incentives, clinical features of FTD, such as rapid disease progression, and relatively pure molecular pathology, suggest that there are advantages to developing drugs for FTD as compared to other more common neurodegenerative diseases such as AD. In March 2011, the Frontotemporal Dementia Treatment Study Group (FTSG) sponsored a conference entitled,“ FTD, the Next Therapeutic Frontier,” focused on pre-clinical aspects of FTD drug development. The goal of the meeting was to promote collaborations between academic researchers and biotechnology and pharmaceutical researchers to accelerate the development of new treatments for FTD. Here we report the key findings from the conference, including the rationale for FTD drug development, epidemiological, genetic and neuropathological features of FTD, FTD animal models and how best to use them and examples of successful drug-development collaborations in other neurodegenerative diseases.
doi:10.1016/j.jalz.2012.03.002
PMCID: PMC3542408  PMID: 23043900
6.  The Advantages of FTD Drug Development (Part 2 of FTD: The Next Therapeutic Frontier) 
Frontotemporal Degeneration (FTD) encompasses a spectrum of related neurodegenerative disorders with behavioral, language and motor phenotypes for which there are currently no effective therapies. This manuscript is the second of two articles that summarize the presentations and discussions that occurred at two symposia in 2011 sponsored by the Frontotemporal Dementia Treatment Study Group (FTSG), a collaborative group of academic and industry researchers that is devoted to developing treatments for FTD. This manuscript discusses the current status of FTD clinical research that is relevant to the conduct of clinical trials and why FTD research may be an attractive pathway for developing therapies for neurodegenerative disorders. The clinical and molecular features of FTD, including rapid disease progression and relatively pure molecular pathology, suggest that there are advantages to developing drugs for FTD as compared to other dementias. FTD qualifies as orphan indication, providing additional advantages for drug development. Two recent sets of consensus diagnostic criteria will facilitate the identification of patients with FTD, and a variety of neuropsychological, functional and behavioral scales have been shown to be sensitive to disease progression. Moreover, quantitative neuroimaging measurements demonstrate progressive brain atrophy in FTD at rates that may surpass Alzheimer's disease (AD). Finally, the similarities between FTD and other neurodegenerative diseases with drug development efforts already underway suggest that FTD researchers will be able to draw upon this experience to create a roadmap for FTD drug development. We conclude that FTD research has reached sufficient maturity to pursue clinical development of specific FTD therapies.
doi:10.1016/j.jalz.2012.03.003
PMCID: PMC3562382  PMID: 23062850
7.  Cardiac Disease Increases Risk of Non-amnestic Mild Cognitive Impairment: Stronger impact in women 
JAMA neurology  2013;70(3):374-382.
Objective
Non-amnestic mild cognitive impairment (naMCI), a putative precursor of vascular and other non-Alzheimer’s disease dementias, is hypothesized to have a vascular etiology. We investigated the association of cardiac disease with amnestic (aMCI) and non-amnestic (naMCI) MCI.
Design
A prospective, population-based, cohort study with a median 4.0 years of follow-up.
Setting
Olmsted County, Minnesota.
Participants
Participants were evaluated at baseline and every 15 months using the Clinical Dementia Rating scale, a neurological evaluation, and neuropsychological testing. A diagnosis of normal cognition, MCI, or dementia was made by consensus. Cardiac disease at baseline was assessed from the participant’s medical records.
Main outcome measures
Incident MCI, aMCI, naMCI.
Results
Among 1,450 subjects free of MCI or dementia at baseline, 366 developed MCI. Cardiac disease was associated with an increased risk of naMCI (hazard ratio [HR] 95% confidence interval; 1.77 [1.16–2.72]). However, the association varied by sex (P for interaction = .02). Cardiac disease was associated with an increased risk of naMCI (HR, 3.07 [1.58–5.99]) in women, but not in men (HR, 1.16 [0.68–1.99]. Cardiac disease was not associated with any MCI or aMCI.
Conclusion
Cardiac disease is an independent risk factor for naMCI, within sex comparisons showed a stronger association in women. Prevention and management of cardiac disease and vascular risk factors may reduce the risk of naMCI.
doi:10.1001/jamaneurol.2013.607
PMCID: PMC3734560  PMID: 23358884
8.  Interpreting the Clinical Significance of Capacity Scores for Informed Consent in Alzheimer Disease Clinical Trials 
Objective
Among Alzheimer disease (AD) patients enrolled in a clinical trial, the authors assessed the ability of a standardized capacity assessment procedure to identify persons who are capable of giving their own informed consent.
Design
Cross-sectional interview.
Setting
Thirteen sites participating in a randomized and placebo controlled study of simvastatin for the treatment of mild to moderate AD.
Participants
Persons with mild to moderate AD and their study partners enrolled in the simvastatin clinical trial.
Measurements
Interviews to assess decision-making capacity using the MacArthur Competency Assessment Tool for Clinical Research (MacCAT-CR).
Results
Judges blinded to the subject’s clinical status had a high rate of agreement on patients capable of giving their own informed consent (κ = 0.73). The understanding subscale had the best receiver operator characteristic and an analysis of positive and negative predictive values over a range of hypothetical prevalences of incapacity to consent demonstrated the value of a range of understanding cut-points.
Conclusion
Among mild to moderate AD patients, enrolled in an actual clinical trial, these results suggest evidence based guidelines for using the MacCAT-CR understanding subscale to help guide judgments about whether a patient has the capacity to consent.
doi:10.1097/JGP.0b013e318172b406
PMCID: PMC3936673  PMID: 18556397
Informed consent; decision making capacity; Alzheimer disease
9.  Successful Aging: Definitions and Prediction of Longevity and Conversion to Mild Cognitive Impairment 
Objectives
To examine alternative models of defining and characterizing successful aging.
Design
A retrospective cohort study
Setting
Olmsted County, MN.
Participants
560 community-dwelling non-demented adults, aged 65 years and older.
Measurements
Three models were developed. Each model examined subtests in four cognitive domains: memory, attention/executive function, language, and visual-spatial skills. A composite domain score was generated for each of the four domains. In Model 1, a global z-score was further generated from the four cognitive domains, and subjects with mean global z-score in the top 10% were classified as “successful agers” whereas those in the remaining 90% were classified as “typical agers”. In Model 2, subjects with all 4 domain scores above the 50th percentile were classified as “successful agers.” In Model 3, a primary neuropsychological variable was selected from each domain, and subjects whose score remained above minus 1 SD compared to norms for young adults were labeled successful agers. Validation tests were conducted to determine the ability of each model to predict survival and conversion to mild cognitive impairment (MCI).
Results
Model 1 showed 65% lower mortality in successful agers compared to typical agers, and also a 25% lower conversion rate to MCI.
Conclusion
Model 1 was most strongly associated with longevity and cognitive decline; as such, it can be useful in investigating various predictors of successful aging, including plasma level, APOE genotype, and neuroimaging measurements.
doi:10.1097/JGP.0b013e3181f17ec9
PMCID: PMC3918503  PMID: 21606901
successful aging; optimal aging; longevity; cognitive decline
10.  Frontal asymmetry in behavioral variant FTD: clinicoimaging & pathogenetic correlates 
Neurobiology of aging  2012;34(2):636-639.
We aimed to assess associations between clinical, imaging, pathological and genetic features and frontal lobe asymmetry in behavioral variant frontotemporal dementia (bvFTD). Volumes of the left and right dorsolateral, medial and orbital frontal lobes were measured in 80 bvFTD subjects and subjects were classified into three groups according to the degree of asymmetry (asymmetric left, asymmetric right, symmetric) using cluster analysis. The majority of subjects were symmetric (65%), with 20% asymmetric left and 15% asymmetric right. There were no clinical differences across groups, although there was a trend for greater behavioral dyscontrol in right asymmetric compared to left asymmetric subjects. More widespread atrophy involving the parietal lobe was observed in the symmetric group. Genetic features differed across groups with symmetric frontal lobes associated with C9ORF72 and tau mutations, while asymmetric frontal lobes were associated with progranulin mutations. These findings therefore suggest that neuroanatomical patterns of frontal lobe atrophy in bvFTD are influenced by specific gene mutations.
doi:10.1016/j.neurobiolaging.2012.03.009
PMCID: PMC3404265  PMID: 22502999
Frontotemporal dementia; frontal lobes; MRI; asymmetry; microtubule associated protein tau; progranulin; C9ORF72; pathology
11.  Corticospinal tract degeneration associated with TDP-43 type C pathology and semantic dementia 
Brain  2013;136(2):455-470.
Four subtypes of frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions have been described (types A–D). Of these four subtypes, motor neuron disease is more commonly associated with type B pathology, but has also been reported with type A pathology. We have noted, however, the unusual occurrence of cases of type C pathology having corticospinal tract degeneration. We aimed to assess the severity of corticospinal tract degeneration in a large cohort of cases with type C (n = 31). Pathological analysis included semi-quantitation of myelin loss of fibres of the corticospinal tract and associated macrophage burden, as well as axonal loss, at the level of the medullary pyramids. We also assessed for motor cortex degeneration and fibre loss of the medial lemniscus/olivocerebellar tract. All cases were subdivided into three groups based on the degree of corticospinal tract degeneration: (i) no corticospinal tract degeneration; (ii) equivocal corticospinal tract degeneration; and (iii) moderate to very severe corticospinal tract degeneration. Clinical, genetic, pathological and imaging comparisons were performed across groups. Eight cases had no corticospinal tract degeneration, and 14 cases had equivocal to mild corticospinal tract degeneration. Nine cases, however, had moderate to very severe corticospinal tract degeneration with myelin and axonal loss. In these nine cases, there was degeneration of the motor cortex without lower motor neuron degeneration or involvement of other brainstem tracts. These cases most commonly presented as semantic dementia, and they had longer disease duration (mean: 15.3 years) compared with the other two groups (10.8 and 9.9 years; P = 0.03). After adjusting for disease duration, severity of corticospinal tract degeneration remained significantly different across groups. Only one case, without corticospinal tract degeneration, was found to have a hexanucleotide repeat expansion in the C9ORF72 gene. All three groups were associated with anterior temporal lobe atrophy on MRI; however, the cases with moderate to severe corticospinal tract degeneration showed right-sided temporal lobe asymmetry and greater involvement of the right temporal lobe and superior motor cortices than the other groups. In contrast, the cases with no or equivocal corticospinal tract degeneration were more likely to show left-sided temporal lobe asymmetry. For comparison, the corticospinal tract was assessed in 86 type A and B cases, and only two cases showed evidence of corticospinal tract degeneration without lower motor neuron degeneration. These findings confirm that there exists a unique association between frontotemporal lobar degeneration with type C pathology and corticospinal tract degeneration, with this entity showing a predilection to involve the right temporal lobe.
doi:10.1093/brain/aws324
PMCID: PMC3572926  PMID: 23358603
TDP-43 type C; corticospinal tract; MRI; semantic dementia; right temporal lobe
12.  Healthy Young Hearts Sharper Older Minds Make 
Annals of neurology  2013;73(2):151-152.
doi:10.1002/ana.23847
PMCID: PMC3620838  PMID: 23526555
13.  Update on hypothetical model of Alzheimer’s disease biomarkers 
Lancet neurology  2013;12(2):207-216.
In 2010, the authors published a hypothetical model of the major biomarkers of Alzheimer’s disease (AD). The model was received with interest because we described the temporal evolution of AD biomarkers in relation to each other and to the onset and progression of clinical symptoms. In the interim, evidence has accumulated that supports the major assumptions of this model. Evidence has also appeared that challenges some of the assumptions underlying our original model. Recent evidence has allowed us to modify our original model. Refinements include indexing subjects by time rather than clinical symptom severity; incorporating inter-subject variability in cognitive response to the progression of AD pathophysiology; modifications of the specific temporal ordering of some biomarkers; and, recognition that the two major proteinopathies underlying AD biomarker changes, Aβ and tau, may be initiated independently in late onset AD where we hypothesize that an incident Aβopathy can accelerate an antecedent tauopathy.
doi:10.1016/S1474-4422(12)70291-0
PMCID: PMC3622225  PMID: 23332364
14.  Selective Worsening of Brain Injury Biomarker Abnormalities in Cognitively Normal Elderly with β-amyloidosis 
JAMA neurology  2013;70(8):10.1001/jamaneurol.2013.182.
Importance
The appearance of β-amyloidosis and brain injury biomarkers in cognitively normal (CN) persons is thought to define risk for the future development of cognitive impairment due to Alzheimer’s disease (AD), but their interaction is poorly understood.
Objective
To test the hypothesis that the joint presence of β-amyloidosis and brain injury biomarkers would lead to more rapid neurodegeneration.
Design
Longitudinal Cohort Study
Setting
Population-based Mayo Clinic Study of Aging.
Participants
191 CN persons (median age 77, range 71–93) in the Mayo Clinic Study of Aging who underwent MR, FDG PET and PiB PET imaging at least twice 15 months apart. Subjects were grouped according to the recommendations of the NIA-AA Preclinical AD criteria, based on the presence of β-amyloidosis, defined as a PiB PET SUVr >1.5, alone (Stage 1) or with brain injury (stage 2+3), defined as hippocampal atrophy or FDG hypometabolism. We also studied a group of MCI (n=17) and dementia (n=9) patients from the Mayo Clinic Study of Aging or the Mayo Alzheimer Center with similar follow-up times who had had comparable imaging and who all had PiB PET SUVr >1.5.
Main Outcome Measures
Rate of change of cortical volume on volumetric MR scans and rate of change of glucose metabolism on FDG PET scans.
Results
There were 25 CN subjects with both high PiB retention and low hippocampal volume or FDG hypometabolism at baseline (Preclinical AD stages 2+3). On follow-up scans, the Preclinical AD stages 2+3 subjects had greater loss of medial temporal lobe volume and greater glucose hypometabolism in the medial temporal lobe compared to other CN groups. The changes were similar to the cognitively impaired participants. Extra-temporal regions did not show similar changes.
Conclusions
Higher rates of medial temporal neurodegeneration occurred in CN individuals who, on their initial scans, had abnormal levels of both β-amyloid and brain injury biomarkers.
doi:10.1001/jamaneurol.2013.182
PMCID: PMC3884555  PMID: 23797806
Alzheimer’s disease; PET imaging; MR imaging; Epidemiology
15.  Caloric Intake, Aging, and Mild Cognitive Impairment: A Population-Based Study 
In a population-based case-control study, we examined whether moderate and high caloric intakes are differentially associated with the odds of having mild cognitive impairment (MCI). The sample was derived from the Mayo Clinic Study of Aging in Olmsted County, Minnesota. Non-demented study participants aged 70–92 years (1,072 cognitively normal persons and 161 subjects with MCI) reported their caloric consumption within 1 year of the date of interview by completing a Food Frequency Questionnaire. An expert consensus panel classified each subject as either cognitively normal or having MCI based on published criteria. We conducted multivariable logistic regression analyses to compute odds ratios (OR) and 95% confidence intervals (95% CI) after adjusting for age, sex, education, depression, medical comorbidity, and body mass index. We also conducted stratified analyses by apolipoprotein E ε4 genotype status. Analyses were conducted in tertiles of caloric intake: 600 to <1,526 kcals per day (reference group); 1,526 to 2,143 kcals per day (moderate caloric intake group); and >2,143 kcals per day (high caloric intake group). In the primary analysis, there was no significant difference between the moderate caloric intake group and the reference group (OR 0.87, 95% CI 0.53–1.42, p = 0.57). However, high caloric intake was associated with a nearly two-fold increased odds of having MCI (OR 1.96, 95% CI 1.26–3.06, p = 0.003) as compared to the reference group. Therefore, high caloric intake was associated with MCI but not moderate caloric intake. This association is not necessarily a cause-effect relationship.
doi:10.3233/JAD-121270
PMCID: PMC3578975  PMID: 23234878
aging; APOE ε4 genotype; caloric intake; mild cognitive impairment; population-based
16.  Polysomnographic Findings in Dementia With Lewy Bodies 
The neurologist  2013;19(1):1-6.
Introduction
The clinical features of dementia with Lewy bodies (DLB) during wakefulness are well known. Other than REM sleep behavior disorder (RBD), only limited data exists on other sleep disturbances and disorders in DLB. We sought to characterize the polysomnographic (PSG) findings in a series of DLB patients with sleep-related complaints.
Methods
Retrospective study of patients with DLB who underwent clinical PSG at Mayo Clinic Rochester or Mayo Clinic Jacksonville over an almost 11 year span for evaluation of dream enactment behavior, excessive nocturnal movements, sleep apnea, hypersomnolence, or insomnia. The following variables were analyzed: respiratory disturbance index (RDI) in disordered breathing events/hour, periodic limb movement arousal index (PLMAI), arousals for no apparent reason (AFNAR), total arousal index (TAI), presence of REM sleep without atonia (RSWA), and percent sleep efficiency (SE).
Results
Data on 78 patients (71M, 7F) were analyzed. The mean age was 71 ± 8 years. Seventy-five (96%) patients had histories of recurrent dream enactment during sleep with 83% showing confirmation of RSWA +/- dream enactment during PSG. Mean RDI = 11.9 ± 5.8, PLMAI = 5.9 ± 8.5, AFNARI = 10.7 ± 12.0, and TAI = 26.6 ± 17.4. SE was <80% in 72% of the sample, <70% in 49%, and <60% in 24%. In patients who did not show evidence of significant disordered breathing (23 with RDI<5), 62% of arousals were AFNARs. In those patients who had significant disordered breathing (55 with RDI ≥ 5), 36% of arousals were AFNARs. Six patients underwent evaluations with PSG plus MSLT. Two patients had mean initial sleep latencies less than five minutes, and both had RDI<5. No patient had any sleep onset rapid eye movement periods. Nineteen patients have undergone neuropathologic examination, and 18 have had limbic- or neocortical-predominant Lewy body pathology. One had progressive supranuclear palsy, but no REM sleep was recorded in prior PSG.
Conclusions
In patients with DLB and sleep-related complaints, several sleep disturbances in addition to RBD are frequently present. In this sample, about three quarters had a significant number of arousals not accounted for by a movement or breathing disturbance, and the primary sleep disorders do not appear to entirely account for the poor sleep efficiency in DLB, especially in those without a significant breathing disorder. Further studies are warranted to better understand the relationship between disturbed sleep, arousal and DLB; such characterization may provide insights into potential avenues of treatment of symptoms which could impact quality of life.
doi:10.1097/NRL.0b013e31827c6bdd
PMCID: PMC3587292  PMID: 23269098
Sleep disorders; REM sleep behavior disorder; dementia with Lewy bodies; synucleinopathy
17.  Fat mass and obesity gene and cognitive decline 
Neurology  2013;80(1):92-99.
ABSTRACT
Objective:
To determine whether 4 genetic variants in the fat mass and obesity associated gene (FTO) identified in genome-wide association studies of diabetes and obesity are associated with cognitive change in midlife in the Atherosclerosis Risk in Communities (ARIC) Study.
Methods:
ARIC is a prospective cohort study of the development of atherosclerosis in 15,792 individuals aged 45 to 64 years at baseline from 1986 to 1989. FTO is highly expressed in human fetal and adult brain, and a single nucleotide polymorphism in FTO has previously been associated with reduced brain volume in cognitively normal subjects. Since a relationship between brain atrophy and diminished cognitive function has been demonstrated in ARIC participants, general linear models were used to evaluate the association between 6-year change in scores on 3 neuropsychological tests and FTO genotype.
Results:
In a sample of 8,364 white and 2,083 African American men and women with no clinical history of stroke, significantly greater mean change in performance on the Delayed Word Recall Test was associated with 2 of 4 FTO single nucleotide polymorphisms examined (rs9939609, rs805136, rs17817449, and rs1421085) in whites but not in African Americans (p ≤ 0.002). The association of the FTO polymorphisms with cognitive change was independent of potential confounding clinical and demographic variables including age, gender, education, diabetes, hypertension, and body mass index.
Conclusions:
Further studies will be needed to clarify the biological mechanisms and genetic pathways through which variants in FTO can increase susceptibility to decline in verbal memory detectable in middle-aged, community-dwelling adults.
doi:10.1212/WNL.0b013e3182768910
PMCID: PMC3589198  PMID: 23136261
18.  Cognition and Incident Dementia Hospitalization: Results from the Atherosclerosis Risk in Communities (ARIC) Study 
Neuroepidemiology  2012;40(2):117-124.
Background/Aims
Cognitive decline is a defining feature of dementia. We sought to determine if a single baseline cognitive test score or change in test score over time is more strongly associated with risk of dementia hospitalization. We also sought to compare short- and long-term dementia risk.
Methods
Prospective cohort study of 9,399 individuals from the Atherosclerosis Risk in Communities (ARIC) Study (median 10 years follow-up). Cognition was assessed at two time points (6 years apart) using three tests: Delayed Word Recall (DWRT), Digit Symbol Substitution (DSST), and Word Fluency (WFT). Dementia hospitalizations were determined using ICD-9 codes.
Results
Baseline cognitive test scores were associated with both short-term and long-term risk of dementia. The association of 6-year change in cognitive test score with dementia risk was stronger than that of individual test scores at a single visit (change from highest to lowest tertile, DWRT: HR=6.45 (1.80, 23.08), DSST: HR=10.94 (3.07, 38.97)).
Conclusions
In this community-based population, 6-year changes in cognitive scores were more strongly associated with risk of incident dementia hospitalization than baseline scores, although single DWRT and DSST scores at were predictive. Our findings support the contention that cognitive changes may precede clinical dementia by a decade or more.
doi:10.1159/000342308
PMCID: PMC3642775  PMID: 23095770
Cognition; Dementia; Hospitalizations; Cognitive Function; Cognitive Decline
19.  Donepezil 23 mg 
Neurology. Clinical Practice  2012;2(4):352-355.
Summary
Donepezil 10 mg/day has been a modestly successful therapeutic agent for the palliative treatment of Alzheimer disease dementia. In 2011, seeking greater efficacy and an extension of the Aricept brand, a 23-mg formulation of donepezil was introduced. A large-scale trial, organized by Eisai, the sponsor, failed to show superiority in their primary analyses of donepezil 23 mg/day in patients with moderate to severe Alzheimer disease dementia vs 10 mg, but the published report used post hoc analyses to claim “statistically significant benefits.” There was greater than a 3 times higher rate of gastrointestinal side effects with 23 mg of donepezil compared to 10 mg. Thus, not only does donepezil 23 mg/day increase the likelihood of unacceptable gastrointestinal side effects, it provides no clinical benefits. Aricept 23 mg is about 10 times more costly per pill than donepezil 10 mg.
doi:10.1212/CPJ.0b013e318278bebd
PMCID: PMC3613207  PMID: 23634378
20.  Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype 
Neurobiology of aging  2012;33(12):2950.e5-2950.e7.
Expansions of the non-coding GGGGCC hexanucleotide repeat in the chromosome 9 open reading frame 72 (C9ORF72) gene were recently identified as the long sought-after cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) on chromosome 9p. In this study we aimed to determine whether the length of the normal - unexpanded - allele of the GGGGCC repeat in C9ORF72 plays a role in the presentation of disease or affects age at onset in C9ORF72 mutation carriers. We also studied whether the GGGGCC repeat length confers risk or affects age at onset in FTD and ALS patients without C9ORF72 repeat expansions. C9ORF72 genotyping was performed in 580 FTD, 995 ALS and 160 FTD-ALS patients and 1444 controls, leading to the identification of 211 patients with pathogenic C9ORF72 repeat expansions and an accurate quantification of the length of the normal alleles in all patients and controls. No meaningful association between the repeat length of the normal alleles of the GGGGCC repeat in C9ORF72 and disease phenotype or age at onset was observed in C9ORF72 mutation carriers or non-mutation carriers.
doi:10.1016/j.neurobiolaging.2012.07.005
PMCID: PMC3617405  PMID: 22840558
Amyotrophic lateral sclerosis; Frontotemporal Dementia; C9ORF72; Repeat-expansion disease; Association study
21.  Limb Immobilization and Corticobasal Syndrome 
Parkinsonism & related disorders  2012;18(10):1097-1099.
Background
Recently, we evaluated two patients with corticobasal syndrome (CBS) who reported symptom onset after limb immobilization. Our objective was to investigate the association between trauma, immobilization and CBS.
Methods
The charts of forty-four consecutive CBS patients seen in the Mayo Clinic Alzheimer Disease Research Center were reviewed with attention to trauma and limb immobilization.
Results
10 CBS patients (23%) had immobilization or trauma on the most affected limb preceding the onset or acceleration of symptoms. The median age at onset was 61. Six patients manifested their first symptoms after immobilization from surgery or fracture with one after leg trauma. Four patients had pre-existing symptoms of limb dysfunction but significantly worsened after immobilization or surgery.
Conclusions
23 percent of patients had immobilization or trauma of the affected limb. This might have implications for management of CBS, for avoiding injury, limiting immobilization and increasing movement in the affected limb.
doi:10.1016/j.parkreldis.2012.05.025
PMCID: PMC3461122  PMID: 22721974
Corticobasal syndrome; plasticity; immobilization
22.  Amyloid-first and neurodegeneration-first profiles characterize incident amyloid PET positivity 
Neurology  2013;81(20):1732-1740.
Objective:
To estimate the incidence of and to characterize cognitive and imaging findings associated with incident amyloid PET positivity.
Methods:
Cognitively normal (CN) participants in the Mayo Clinic Study of Aging who had 2 or more serial imaging assessments, which included amyloid PET, FDG-PET, and MRI at each time point, were eligible for analysis (n = 207). Twelve subjects with Alzheimer disease dementia were included for comparison.
Results:
Of the 123 CN participants who were amyloid-negative at baseline, 26 met criteria for incident amyloid PET positivity. Compared to the 69 subjects who remained stable amyloid-negative, on average these 26 did not differ on any imaging, demographic, or cognitive variables except amyloid PET (by definition) and task-free functional connectivity, which at baseline was greater in the incident amyloid-positive group. Eleven of the 26 incident amyloid-positive subjects had abnormal hippocampal volume, FDG-PET, or both at baseline.
Conclusions:
The incidence of amyloid PET positivity is approximately 13% per year among CN participants over age 70 sampled from a population-based cohort. In 15/26 (58%), incident amyloid positivity occurred prior to abnormalities in FDG-PET and hippocampal volume. However, 11/26 (42%) incident amyloid-positive subjects had evidence of neurodegeneration prior to incident amyloid positivity. These 11 could be subjects with combinations of preexisting non-Alzheimer pathophysiologies and tau-mediated neurodegeneration who newly entered the amyloid pathway. Our findings suggest that both “amyloid-first” and “neurodegeneration-first” biomarker profile pathways to preclinical AD exist.
doi:10.1212/01.wnl.0000435556.21319.e4
PMCID: PMC3821718  PMID: 24132377
23.  Effect of Lifestyle Activities on AD Biomarkers and Cognition 
Annals of neurology  2012;72(5):730-738.
Objectives
To investigate the effect of intellectual and physical activity on biomarkers of Alzheimer’s disease (AD) pathophysiology and cognition in a non-demented elderly population. The biomarkers evaluated were brain Aβ-amyloid load via PIB-PET, neuronal dysfunction via FDG-PET and neurodegeneration via Structural-MRI.
Methods
We studied 515 non-demented (428 cognitively normal and 87 MCI) participants in the population based Mayo Clinic Study of Aging who completed a 3T MRI, PET scans, APOE genotype, had lifestyle activity measures and cognition data available. The imaging measures computed were global PiB-PET uptake; global FDG-PET and MRI based hippocampal volume. We consolidated activity variables into lifetime intellectual, current intellectual and current physical activities. We used a global cognitive Z-score as a measure of cognition. We applied two independent methods – partial correlation analysis adjusted for age and gender and path analysis using structural equations to evaluate the associations between lifestyle activities, imaging biomarkers and global cognition.
Results
None of the lifestyle variables correlated with the biomarkers and the path associations between lifestyle variables and biomarkers were not significant (p>0.05). On the other hand, all the biomarkers were correlated with global cognitive Z-score (p<0.05) and the path associations between (lifetime and current) intellectual activities and global Z-score were significant (p<0.01).
Interpretation
Intellectual and physical activity lifestyle factors were not associated with AD biomarkers but intellectual lifestyle factors explained variability in the cognitive performance in this non-demented population. This study provides evidence that lifestyle activities may delay the onset of dementia but do not significantly influence the expression of AD pathophysiology.
doi:10.1002/ana.23665
PMCID: PMC3539211  PMID: 23280791
Alzheimer’s disease; Imaging biomarkers; Lifestyle Activities
24.  Indicators of amyloid burden in a population-based study of cognitively normal elderly 
Neurology  2012;79(15):1570-1577.
Objectives:
Secondary prevention trials in subjects with preclinical Alzheimer disease may require documentation of brain amyloidosis. The identification of inexpensive and noninvasive screening variables that can identify individuals who have significant amyloid accumulation would reduce screening costs.
Methods:
A total of 483 cognitively normal (CN) individuals, aged 70–92 years, from the population-based Mayo Clinic Study of Aging, underwent Pittsburgh compound B (PiB)–PET imaging. Logistic regression determined whether age, sex, APOE genotype, family history, or cognitive performance was associated with odds of a PiB retention ratio >1.4 and >1.5. Area under the receiver operating characteristic curve (AUROC) evaluated the discrimination between PiB-positive and -negative subjects. For each characteristic, we determined the number needed to screen in each age group (70–79 and 80–89) to identify 100 participants with PiB >1.4 or >1.5.
Results:
A total of 211 (44%) individuals had PiB >1.4 and 151 (31%) >1.5. In univariate and multivariate models, discrimination was modest (AUROC ∼0.6–0.7). Multivariately, age and APOE best predicted odds of PiB >1.4 and >1.5. Subjective memory complaints were similar to cognitive test performance in predicting PiB >1.5. Indicators of PiB positivity varied with age. Screening APOE ε4 carriers alone reduced the number needed to screen to enroll 100 subjects with PIB >1.5 by 48% in persons aged 70–79 and 33% in those aged 80–89.
Conclusions:
Age and APOE genotype are useful predictors of the likelihood of significant amyloid accumulation, but discrimination is modest. Nonetheless, these results suggest that inexpensive and noninvasive measures could significantly reduce the number of CN individuals needed to screen to enroll a given number of amyloid-positive subjects.
doi:10.1212/WNL.0b013e31826e2696
PMCID: PMC3475629  PMID: 22972644
25.  Neuroimaging correlates of pathologically-defined atypical Alzheimer’s disease 
Lancet neurology  2012;11(10):868-877.
Background
Atypical variants of Alzheimer’s disease (AD) have been pathologically defined based on the distribution of neurofibrillary tangles; hippocampal sparing (HpSp) AD shows minimal involvement of the hippocampus and limbic predominant (LP) AD shows neurofibrillary tangles restricted to the medial temporal lobe. We aimed to determine whether MRI patterns of atrophy differ across HpSp AD, LP AD and typical AD, and whether imaging could be a useful predictor of pathological subtype during life.
Methods
In this case-control study, we identified 177 patients who had been prospectively followed in the Mayo Clinic Alzheimer’s Disease Research Center, were demented during life, had AD pathology at autopsy (Braak stage ≥ IV, intermediate-high probability AD) and an antemortem MRI. Cases were assigned to one of three pathological subtypes (HpSp n=19, typical n=125, or LP AD n=33) based on neurofibrillary tangle counts and their ratio in association cortices to hippocampus, without reference to neuronal loss. Voxel-based morphometry and atlas-based parcellation were used to compare patterns of grey matter loss across groups, and to controls.
Findings
The severity of medial temporal and cortical grey matter atrophy differed across subtypes. The most severe medial temporal atrophy was observed in LP AD, followed by typical AD, and then HpSp AD. Conversely, the most severe cortical atrophy was observed in HpSp AD, followed by typical AD, and then LP AD. A ratio of hippocampal-to-cortical volume provided the best discrimination across all three AD subtypes. The majority of typical AD (98/125;78%) and LP AD (31/33;94%) subjects, but only 8/19 (42%) of the HpSp AD subjects, presented with a dominant amnestic syndrome.
Interpretation
Patterns of atrophy on MRI differ across the pathological subtypes of AD, suggesting that MR regional volumetrics reliably track the distribution of neurofibrillary tangle pathology and can predict pathological subtype during life.
Funding
US National Institutes of Health (National Institute on Aging)
doi:10.1016/S1474-4422(12)70200-4
PMCID: PMC3490201  PMID: 22951070

Results 1-25 (156)