Search tips
Search criteria

Results 1-25 (40)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  In Vitro Biochemical Study of CYP51-Mediated Azole Resistance in Aspergillus fumigatus 
Antimicrobial Agents and Chemotherapy  2015;59(12):7771-7778.
The incidence of triazole-resistant Aspergillus infections is increasing worldwide, often mediated through mutations in the CYP51A amino acid sequence. New classes of azole-based drugs are required to combat the increasing resistance to existing triazole therapeutics. In this study, a CYP51 reconstitution assay is described consisting of eburicol, purified recombinant Aspergillus fumigatus CPR1 (AfCPR1), and Escherichia coli membrane suspensions containing recombinant A. fumigatus CYP51 proteins, allowing in vitro screening of azole antifungals. Azole-CYP51 studies determining the 50% inhibitory concentration (IC50) showed that A. fumigatus CYP51B (Af51B IC50, 0.50 μM) was 34-fold more susceptible to inhibition by fluconazole than A. fumigatus CYP51A (Af51A IC50, 17 μM) and that Af51A and Af51B were equally susceptible to inhibition by voriconazole, itraconazole, and posaconazole (IC50s of 0.16 to 0.38 μM). Af51A-G54W and Af51A-M220K enzymes were 11- and 15-fold less susceptible to inhibition by itraconazole and 30- and 8-fold less susceptible to inhibition by posaconazole than wild-type Af51A, confirming the azole-resistant phenotype of these two Af51A mutations. Susceptibility to voriconazole of Af51A-G54W and Af51A-M220K was only marginally lower than that of wild-type Af51A. Susceptibility of Af51A-L98H to inhibition by voriconazole, itraconazole, and posaconazole was only marginally lower (less than 2-fold) than that of wild-type Af51A. However, Af51A-L98H retained 5 to 8% residual activity in the presence of 32 μM triazole, which could confer azole resistance in A. fumigatus strains that harbor the Af51A-L98H mutation. The AfCPR1/Af51 assay system demonstrated the biochemical basis for the increased azole resistance of A. fumigatus strains harboring G54W, L98H, and M220K Af51A point mutations.
PMCID: PMC4649140  PMID: 26459890
2.  Proper Sterol Distribution Is Required for Candida albicans Hyphal Formation and Virulence 
G3: Genes|Genomes|Genetics  2016;6(11):3455-3465.
Candida albicans is an opportunistic fungus responsible for the majority of systemic fungal infections. Multiple factors contribute to C. albicans pathogenicity. C. albicans strains lacking CaArv1 are avirulent. Arv1 has a conserved Arv1 homology domain (AHD) that has a zinc-binding domain containing two cysteine clusters. Here, we explored the role of the CaAHD and zinc-binding motif in CaArv1-dependent virulence. Overall, we found that the CaAHD was necessary but not sufficient for cells to be virulent, whereas the zinc-binding domain was essential, as Caarv1/Caarv1 cells expressing the full-length zinc-binding domain mutants, Caarv1C3S and Caarv1C28S, were avirulent. Phenotypically, we found a direct correlation between the avirulence of Caarv1/Caarv1, Caarrv1AHD, Caarv1C3S, and Caarv1C28S cells and defects in bud site selection, septa formation and localization, and hyphal formation and elongation. Importantly, all avirulent mutant strains lacked the ability to maintain proper sterol distribution. Overall, our results have established the importance of the AHD and zinc-binding domain in fungal invasion, and have correlated an avirulent phenotype with the inability to maintain proper sterol distribution.
PMCID: PMC5100844  PMID: 27587298
virulence; Candida; sterol; hyphae; lipid
3.  Azole Antifungal Agents To Treat the Human Pathogens Acanthamoeba castellanii and Acanthamoeba polyphaga through Inhibition of Sterol 14α-Demethylase (CYP51) 
In this study, we investigate the amebicidal activities of the pharmaceutical triazole CYP51 inhibitors fluconazole, itraconazole, and voriconazole against Acanthamoeba castellanii and Acanthamoeba polyphaga and assess their potential as therapeutic agents against Acanthamoeba infections in humans. Amebicidal activities of the triazoles were assessed by in vitro minimum inhibition concentration (MIC) determinations using trophozoites of A. castellanii and A. polyphaga. In addition, triazole effectiveness was assessed by ligand binding studies and inhibition of CYP51 activity of purified A. castellanii CYP51 (AcCYP51) that was heterologously expressed in Escherichia coli. Itraconazole and voriconazole bound tightly to AcCYP51 (dissociation constant [Kd] of 10 and 13 nM), whereas fluconazole bound weakly (Kd of 2,137 nM). Both itraconazole and voriconazole were confirmed to be strong inhibitors of AcCYP51 activity (50% inhibitory concentrations [IC50] of 0.23 and 0.39 μM), whereas inhibition by fluconazole was weak (IC50, 30 μM). However, itraconazole was 8- to 16-fold less effective (MIC, 16 mg/liter) at inhibiting A. polyphaga and A. castellanii cell proliferation than voriconazole (MIC, 1 to 2 mg/liter), while fluconazole did not inhibit Acanthamoeba cell division (MIC, >64 mg/liter) in vitro. Voriconazole was an effective inhibitor of trophozoite proliferation for A. castellanii and A. polyphaga; therefore, it should be evaluated in trials versus itraconazole for controlling Acanthamoeba infections.
PMCID: PMC4505289  PMID: 26014948
4.  Azole Antifungal Sensitivity of Sterol 14α-Demethylase (CYP51) and CYP5218 from Malassezia globosa 
Scientific Reports  2016;6:27690.
Malassezia globosa cytochromes P450 CYP51 and CYP5218 are sterol 14α-demethylase (the target of azole antifungals) and a putative fatty acid metabolism protein (and a potential azole drug target), respectively. Lanosterol, eburicol and obtusifoliol bound to CYP51 with Kd values of 32, 23 and 28 μM, respectively, catalyzing sterol 14α-demethylation with respective turnover numbers of 1.7 min−1, 5.6 min−1 and 3.4 min−1. CYP5218 bound a range of fatty acids with linoleic acid binding strongest (Kd 36 μM), although no metabolism could be detected in reconstitution assays or role in growth on lipids. Clotrimazole, fluconazole, itraconazole, ketoconazole, voriconazole and ketaminazole bound tightly to CYP51 (Kd ≤ 2 to 11 nM). In contrast, fluconazole did not bind to CYP5218, voriconazole and ketaminazole bound weakly (Kd ~107 and ~12 μM), whereas ketoconazole, clotrimazole and itraconazole bound strongest to CYP5218 (Kd ~1.6, 0.5 and 0.4 μM) indicating CYP5218 to be only a secondary target of azole antifungals. IC50 determinations confirmed M. globosa CYP51 was strongly inhibited by azole antifungals (0.15 to 0.35 μM). MIC100 studies showed itraconazole should be considered as an alternative to ketoconazole given the potency and safety profiles and the CYP51 assay system can be used in structure-activity studies in drug development.
PMCID: PMC4904373  PMID: 27291783
5.  Novel Substrate Specificity and Temperature-Sensitive Activity of Mycosphaerella graminicola CYP51 Supported by the Native NADPH Cytochrome P450 Reductase 
Applied and Environmental Microbiology  2015;81(10):3379-3386.
Mycosphaerella graminicola (Zymoseptoria tritici) is an ascomycete filamentous fungus that causes Septoria leaf blotch in wheat crops. In Europe the most widely used fungicides for this major disease are demethylation inhibitors (DMIs). Their target is the essential sterol 14α-demethylase (CYP51), which requires cytochrome P450 reductase (CPR) as its redox partner for functional activity. The M. graminicola CPR (MgCPR) is able to catalyze the sterol 14α-demethylation of eburicol and lanosterol when partnered with Candida albicans CYP51 (CaCYP51) and that of eburicol only with M. graminicola CYP51 (MgCYP51). The availability of the functional in vivo redox partner enabled the in vitro catalytic activity of MgCYP51 to be demonstrated for the first time. MgCYP51 50% inhibitory concentration (IC50) studies with epoxiconazole, tebuconazole, triadimenol, and prothioconazole-desthio confirmed that MgCYP51 bound these azole inhibitors tightly. The characterization of the MgCPR/MgCYP51 redox pairing has produced a functional method to evaluate the effects of agricultural azole fungicides, has demonstrated eburicol specificity in the activity observed, and supports the conclusion that prothioconazole is a profungicide.
PMCID: PMC4407231  PMID: 25746994
6.  Clotrimazole as a Potent Agent for Treating the Oomycete Fish Pathogen Saprolegnia parasitica through Inhibition of Sterol 14α-Demethylase (CYP51) 
Applied and Environmental Microbiology  2014;80(19):6154-6166.
A candidate CYP51 gene encoding sterol 14α-demethylase from the fish oomycete pathogen Saprolegnia parasitica (SpCYP51) was identified based on conserved CYP51 residues among CYPs in the genome. It was heterologously expressed in Escherichia coli, purified, and characterized. Lanosterol, eburicol, and obtusifoliol bound to purified SpCYP51 with similar binding affinities (Ks, 3 to 5 μM). Eight pharmaceutical and six agricultural azole antifungal agents bound tightly to SpCYP51, with posaconazole displaying the highest apparent affinity (Kd, ≤3 nM) and prothioconazole-desthio the lowest (Kd, ∼51 nM). The efficaciousness of azole antifungals as SpCYP51 inhibitors was confirmed by 50% inhibitory concentrations (IC50s) of 0.17 to 2.27 μM using CYP51 reconstitution assays. However, most azole antifungal agents were less effective at inhibiting S. parasitica, Saprolegnia diclina, and Saprolegnia ferax growth. Epoxiconazole, fluconazole, itraconazole, and posaconazole failed to inhibit Saprolegnia growth (MIC100, >256 μg ml−1). The remaining azoles inhibited Saprolegnia growth only at elevated concentrations (MIC100 [the lowest antifungal concentration at which growth remained completely inhibited after 72 h at 20°C], 16 to 64 μg ml−1) with the exception of clotrimazole, which was as potent as malachite green (MIC100, ∼1 μg ml−1). Sterol profiles of azole-treated Saprolegnia species confirmed that endogenous CYP51 enzymes were being inhibited with the accumulation of lanosterol in the sterol fraction. The effectiveness of clotrimazole against SpCYP51 activity (IC50, ∼1 μM) and the concentration inhibiting the growth of Saprolegnia species in vitro (MIC100, ∼1 to 2 μg ml−1) suggest that clotrimazole could be used against Saprolegnia infections, including as a preventative measure by pretreatment of fish eggs, and for freshwater-farmed fish as well as in leisure activities.
PMCID: PMC4178690  PMID: 25085484
7.  Resistance to antifungals that target CYP51 
Journal of Chemical Biology  2014;7(4):143-161.
Fungal diseases are an increasing global burden. Fungi are now recognised to kill more people annually than malaria, whilst in agriculture, fungi threaten crop yields and food security. Azole resistance, mediated by several mechanisms including point mutations in the target enzyme (CYP51), is increasing through selection pressure as a result of widespread use of triazole fungicides in agriculture and triazole antifungal drugs in the clinic. Mutations similar to those seen in clinical isolates as long ago as the 1990s in Candida albicans and later in Aspergillus fumigatus have been identified in agriculturally important fungal species and also wider combinations of point mutations. Recently, evidence that mutations originate in the field and now appear in clinical infections has been suggested. This situation is likely to increase in prevalence as triazole fungicide use continues to rise. Here, we review the progress made in understanding azole resistance found amongst clinically and agriculturally important fungal species focussing on resistance mechanisms associated with CYP51. Biochemical characterisation of wild-type and mutant CYP51 enzymes through ligand binding studies and azole IC50 determinations is an important tool for understanding azole susceptibility and can be used in conjunction with microbiological methods (MIC50 values), molecular biological studies (site-directed mutagenesis) and protein modelling studies to inform future antifungal development with increased specificity for the target enzyme over the host homologue.
PMCID: PMC4182338  PMID: 25320648
CYP51; Sterol 14-demethylase; Point mutations; Azole resistance; Antifungals; Fungicides
8.  Azole Affinity of Sterol 14α-Demethylase (CYP51) Enzymes from Candida albicans and Homo sapiens 
Candida albicans CYP51 (CaCYP51) (Erg11), full-length Homo sapiens CYP51 (HsCYP51), and truncated Δ60HsCYP51 were expressed in Escherichia coli and purified to homogeneity. CaCYP51 and both HsCYP51 enzymes bound lanosterol (Ks, 14 to 18 μM) and catalyzed the 14α-demethylation of lanosterol using Homo sapiens cytochrome P450 reductase and NADPH as redox partners. Both HsCYP51 enzymes bound clotrimazole, itraconazole, and ketoconazole tightly (dissociation constants [Kds], 42 to 131 nM) but bound fluconazole (Kd, ∼30,500 nM) and voriconazole (Kd, ∼2,300 nM) weakly, whereas CaCYP51 bound all five medical azole drugs tightly (Kds, 10 to 56 nM). Selectivity for CaCYP51 over HsCYP51 ranged from 2-fold (clotrimazole) to 540-fold (fluconazole) among the medical azoles. In contrast, selectivity for CaCYP51 over Δ60HsCYP51 with agricultural azoles ranged from 3-fold (tebuconazole) to 9-fold (propiconazole). Prothioconazole bound extremely weakly to CaCYP51 and Δ60HsCYP51, producing atypical type I UV-visible difference spectra (Kds, 6,100 and 910 nM, respectively), indicating that binding was not accomplished through direct coordination with the heme ferric ion. Prothioconazole-desthio (the intracellular derivative of prothioconazole) bound tightly to both CaCYP51 and Δ60HsCYP51 (Kd, ∼40 nM). These differences in binding affinities were reflected in the observed 50% inhibitory concentration (IC50) values, which were 9- to 2,000-fold higher for Δ60HsCYP51 than for CaCYP51, with the exception of tebuconazole, which strongly inhibited both CYP51 enzymes. In contrast, prothioconazole weakly inhibited CaCYP51 (IC50, ∼150 μM) and did not significantly inhibit Δ60HsCYP51.
PMCID: PMC3591892  PMID: 23274672
9.  Prothioconazole and Prothioconazole-Desthio Activities against Candida albicans Sterol 14-α-Demethylase 
Prothioconazole is a new triazolinthione fungicide used in agriculture. We have used Candida albicans CYP51 (CaCYP51) to investigate the in vitro activity of prothioconazole and to consider the use of such compounds in the medical arena. Treatment of C. albicans cells with prothioconazole, prothioconazole-desthio, and voriconazole resulted in CYP51 inhibition, as evidenced by the accumulation of 14α-methylated sterol substrates (lanosterol and eburicol) and the depletion of ergosterol. We then compared the inhibitor binding properties of prothioconazole, prothioconazole-desthio, and voriconazole with CaCYP51. We observed that prothioconazole-desthio and voriconazole bind noncompetitively to CaCYP51 in the expected manner of azole antifungals (with type II inhibitors binding to heme as the sixth ligand), while prothioconazole binds competitively and does not exhibit classic inhibitor binding spectra. Inhibition of CaCYP51 activity in a cell-free assay demonstrated that prothioconazole-desthio is active, whereas prothioconazole does not inhibit CYP51 activity. Extracts from C. albicans grown in the presence of prothioconazole were found to contain prothioconazole-desthio. We conclude that the antifungal action of prothioconazole can be attributed to prothioconazole-desthio.
PMCID: PMC3591943  PMID: 23275516
10.  Two Clinical Isolates of Candida glabrata Exhibiting Reduced Sensitivity to Amphotericin B Both Harbor Mutations in ERG2 
Antimicrobial Agents and Chemotherapy  2012;56(12):6417-6421.
Two novel isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B (MIC, 8 μg ml−1) were found to be ERG2 mutants, wherein Δ8-sterol intermediates comprised >90% of the total cellular sterol fraction. Both harbored an alteration at Thr121 in ERG2; the corresponding residue (Thr119) in Saccharomyces cerevisiae is essential for sterol Δ8-Δ7 isomerization. This constitutes the first report of C. glabrata harboring mutations in ERG2 and exhibiting reduced sensitivity to amphotericin B.
PMCID: PMC3497184  PMID: 23027188
11.  Facultative Sterol Uptake in an Ergosterol-Deficient Clinical Isolate of Candida glabrata Harboring a Missense Mutation in ERG11 and Exhibiting Cross-Resistance to Azoles and Amphotericin B 
We identified a clinical isolate of Candida glabrata (CG156) exhibiting flocculent growth and cross-resistance to fluconazole (FLC), voriconazole (VRC), and amphotericin B (AMB), with MICs of >256, >256, and 32 μg ml−1, respectively. Sterol analysis using gas chromatography-mass spectrometry (GC-MS) revealed that CG156 was a sterol 14α-demethylase (Erg11p) mutant, wherein 14α-methylated intermediates (lanosterol was >80% of the total) were the only detectable sterols. ERG11 sequencing indicated that CG156 harbored a single-amino-acid substitution (G315D) which nullified the function of native Erg11p. In heterologous expression studies using a doxycycline-regulatable Saccharomyces cerevisiae erg11 strain, wild-type C. glabrata Erg11p fully complemented the function of S. cerevisiae sterol 14α-demethylase, restoring growth and ergosterol synthesis in recombinant yeast; mutated CG156 Erg11p did not. CG156 was culturable using sterol-free, glucose-containing yeast minimal medium (glcYM). However, when grown on sterol-supplemented glcYM (with ergosta 7,22-dienol, ergosterol, cholestanol, cholesterol, Δ7-cholestenol, or desmosterol), CG156 cultures exhibited shorter lag phases, reached higher cell densities, and showed alterations in cellular sterol composition. Unlike comparator isolates (harboring wild-type ERG11) that became less sensitive to FLC and VRC when cultured on sterol-supplemented glcYM, facultative sterol uptake by CG156 did not affect its azole-resistant phenotype. Conversely, CG156 grown using glcYM with ergosterol (or with ergosta 7,22-dienol) showed increased sensitivity to AMB; CG156 grown using glcYM with cholesterol (or with cholestanol) became more resistant (MICs of 2 and >64 μg AMB ml−1, respectively). Our results provide insights into the consequences of sterol uptake and metabolism on growth and antifungal resistance in C. glabrata.
PMCID: PMC3421581  PMID: 22615281
12.  S279 Point Mutations in Candida albicans Sterol 14-α Demethylase (CYP51) Reduce In Vitro Inhibition by Fluconazole 
The effects of S279F and S279Y point mutations in Candida albicans CYP51 (CaCYP51) on protein activity and on substrate (lanosterol) and azole antifungal binding were investigated. Both S279F and S279Y mutants bound lanosterol with 2-fold increased affinities (Ks, 7.1 and 8.0 μM, respectively) compared to the wild-type CaCYP51 protein (Ks, 13.5 μM). The S279F and S279Y mutants and the wild-type CaCYP51 protein bound fluconazole, voriconazole, and itraconazole tightly, producing typical type II binding spectra. However, the S279F and S279Y mutants had 4- to 5-fold lower affinities for fluconazole, 3.5-fold lower affinities for voriconazole, and 3.5- to 4-fold lower affinities for itraconazole than the wild-type CaCYP51 protein. The S279F and S279Y mutants gave 2.3- and 2.8-fold higher 50% inhibitory concentrations (IC50s) for fluconazole in a CYP51 reconstitution assay than the wild-type protein did. The increased fluconazole resistance conferred by the S279F and S279Y point mutations appeared to be mediated through a combination of a higher affinity for substrate and a lower affinity for fluconazole. In addition, lanosterol displaced fluconazole from the S279F and S279Y mutants but not from the wild-type protein. Molecular modeling of the wild-type protein indicated that the oxygen atom of S507 interacts with the second triazole ring of fluconazole, assisting in orientating fluconazole so that a more favorable binding conformation to heme is achieved. In contrast, in the two S279 mutant proteins, this S507-fluconazole interaction is absent, providing an explanation for the higher Kd values observed.
PMCID: PMC3318376  PMID: 22252802
13.  Co-production of ethanol and squalene using a Saccharomyces cerevisiae ERG1 (squalene epoxidase) mutant and agro-industrial feedstock 
Genetically customised Saccharomyces cerevisiae that can produce ethanol and additional bio-based chemicals from sustainable agro-industrial feedstocks (for example, residual plant biomass) are of major interest to the biofuel industry. We investigated the microbial biorefinery concept of ethanol and squalene co-production using S. cerevisiae (strain YUG37-ERG1) wherein ERG1 (squalene epoxidase) transcription is under the control of a doxycycline-repressible tet07-CYC1 promoter. The production of ethanol and squalene by YUG37-ERG1 grown using agriculturally sourced grass juice supplemented with doxycycline was assessed.
Use of the tet07-CYC1 promoter permitted regulation of ERG1 expression and squalene accumulation in YUG37-ERG1, allowing us to circumvent the lethal growth phenotype seen when ERG1 is disrupted completely. In experiments using grass juice feedstock supplemented with 0 to 50 μg doxycycline mL−1, YUG37-ERG1 fermented ethanol (22.5 [±0.5] mg mL−1) and accumulated the highest squalene content (7.89 ± 0.25 mg g−1 dry biomass) and yield (18.0 ± 4.18 mg squalene L−1) with supplements of 5.0 and 0.025 μg doxycycline mL−1, respectively. Grass juice was found to be rich in water-soluble carbohydrates (61.1 [±3.6] mg sugars mL−1) and provided excellent feedstock for growth and fermentation studies using YUG37-ERG1.
Residual plant biomass components from crop production and rotation systems represent possible substrates for microbial fermentation of biofuels and bio-based compounds. This study is the first to utilise S. cerevisiae for the co-production of ethanol and squalene from grass juice. Our findings underscore the value of the biorefinery approach and demonstrate the potential to integrate microbial bioprocess engineering with existing agriculture.
PMCID: PMC4189534  PMID: 25298782
Bio-based products; ERG1; Ethanol; Sterol; Squalene; Squalene epoxidase
14.  Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept 
AMB Express  2014;4:64.
Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL−1 and 4.96 [±0.15] g dry weight L−1) compared closely to those of Turbo (37.43 [±1.99] mg mL−1 and 4.78 [±0.10] g L−1, respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.
PMCID: PMC4230830  PMID: 25401067
Bioethanol; Biomass; Biorefinery; Cholesterol; Probiotic; Saccharomyces boulardii
15.  Paralog Re-Emergence: A Novel, Historically Contingent Mechanism in the Evolution of Antimicrobial Resistance 
Molecular Biology and Evolution  2014;31(7):1793-1802.
Evolution of resistance to drugs and pesticides poses a serious threat to human health and agricultural production. CYP51 encodes the target site of azole fungicides, widely used clinically and in agriculture. Azole resistance can evolve due to point mutations or overexpression of CYP51, and previous studies have shown that fungicide-resistant alleles have arisen by de novo mutation. Paralogs CYP51A and CYP51B are found in filamentous ascomycetes, but CYP51A has been lost from multiple lineages. Here, we show that in the barley pathogen Rhynchosporium commune, re-emergence of CYP51A constitutes a novel mechanism for the evolution of resistance to azoles. Pyrosequencing analysis of historical barley leaf samples from a unique long-term experiment from 1892 to 2008 indicates that the majority of the R. commune population lacked CYP51A until 1985, after which the frequency of CYP51A rapidly increased. Functional analysis demonstrates that CYP51A retains the same substrate as CYP51B, but with different transcriptional regulation. Phylogenetic analyses show that the origin of CYP51A far predates azole use, and newly sequenced Rhynchosporium genomes show CYP51A persisting in the R. commune lineage rather than being regained by horizontal gene transfer; therefore, CYP51A re-emergence provides an example of adaptation to novel compounds by selection from standing genetic variation.
PMCID: PMC4069618  PMID: 24732957
standing variation; gene duplication; resistance; fungicides; triazoles; Rhynchosporium
16.  Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? 
The first eukaryote genome revealed three yeast cytochromes P450 (CYPs), hence the subsequent realization that some microbial fungal genomes encode these proteins in 1 per cent or more of all genes (greater than 100) has been surprising. They are unique biocatalysts undertaking a wide array of stereo- and regio-specific reactions and so hold promise in many applications. Based on ancestral activities that included 14α-demethylation during sterol biosynthesis, it is now seen that CYPs are part of the genes and metabolism of most eukaryotes. In contrast, Archaea and Eubacteria often do not contain CYPs, while those that do are frequently interesting as producers of natural products undertaking their oxidative tailoring. Apart from roles in primary and secondary metabolism, microbial CYPs are actual/potential targets of drugs/agrochemicals and CYP51 in sterol biosynthesis is exhibiting evolution to resistance in the clinic and the field. Other CYP applications include the first industrial biotransformation for corticosteroid production in the 1950s, the diversion into penicillin synthesis in early mutations in fungal strain improvement and bioremediation using bacteria and fungi. The vast untapped resource of orphan CYPs in numerous genomes is being probed and new methods for discovering function and for discovering desired activities are being investigated.
PMCID: PMC3538425  PMID: 23297358
microbes; biotechnology; cytochrome P450; bioactive; resistance
17.  An Enlarged, Adaptable Active Site in CYP164 Family P450 Enzymes, the Sole P450 in Mycobacterium leprae 
CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin “open” conformation of the enzyme (Kd [dissociation constant] of 0.1 μM), with binding to the low-spin “closed” form being significantly hindered (Kd of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy.
PMCID: PMC3256051  PMID: 22037849
18.  Structural Analysis of Cytochrome P450 105N1 Involved in the Biosynthesis of the Zincophore, Coelibactin 
Coelibactin is a putative non-ribosomally synthesized peptide with predicted zincophore activity and which has been implicated in antibiotic regulation in Streptomyces coelicolor A3(2). The coelibactin biosynthetic pathway contains a stereo- and regio-specific monooxygenation step catalyzed by a cytochrome P450 enzyme (CYP105N1). We have determined the X-ray crystal structure of CYP105N1 at 2.9 Å and analyzed it in the context of the bacterial CYP105 family as a whole. The crystal structure reveals a channel between the α-helical domain and the β-sheet domain exposing the heme pocket and the long helix I to the solvent. This wide-open conformation of CYP105N1 may be related to the bulky substrate coelibactin. The ligand-free CYP105N1 structure has enough room in the substrate access channel to allow the coelibactin to enter into the active site. Analysis of typical siderophore ligands suggests that CYP105N1 may produce derivatives of coelibactin, which would then be able to chelate the zinc divalent cation.
PMCID: PMC3430247  PMID: 22942716
cytochrome P450; CYP105N1; siderophore; Streptomyces coelicolor A3(2); zinc chelation
19.  Impact of Recently Emerged Sterol 14α-Demethylase (CYP51) Variants of Mycosphaerella graminicola on Azole Fungicide Sensitivity▿ 
Applied and Environmental Microbiology  2011;77(11):3830-3837.
The progressive decline in the effectiveness of some azole fungicides in controlling Mycosphaerella graminicola, causal agent of the damaging Septoria leaf blotch disease of wheat, has been correlated with the selection and spread in the pathogen population of specific mutations in the M. graminicola CYP51 (MgCYP51) gene encoding the azole target sterol 14α-demethylase. Recent studies have suggested that the emergence of novel MgCYP51 variants, often harboring substitution S524T, has contributed to a decrease in the efficacy of prothioconazole and epoxiconazole, the two currently most effective azole fungicides against M. graminicola. In this study, we establish which amino acid alterations in novel MgCYP51 variants have the greatest impact on azole sensitivity and protein function. We introduced individual and combinations of identified alterations by site-directed mutagenesis and functionally determined their impact on azole sensitivity by expression in a Saccharomyces cerevisiae mutant YUG37::erg11 carrying a regulatable promoter controlling native CYP51 expression. We demonstrate that substitution S524T confers decreased sensitivity to all azoles when introduced alone or in combination with Y461S. In addition, S524T restores the function in S. cerevisiae of MgCYP51 variants carrying the otherwise lethal alterations Y137F and V136A. Sensitivity tests of S. cerevisiae transformants expressing recently emerged MgCYP51 variants carrying combinations of alterations D134G, V136A, Y461S, and S524T reveal a substantial impact on sensitivity to the currently most widely used azoles, including epoxiconazole and prothioconazole. Finally, we exploit a recently developed model of the MgCYP51 protein to predict that the substantial structural changes caused by these novel combinations reduce azole interactions with critical residues in the binding cavity, thereby causing resistance.
PMCID: PMC3127603  PMID: 21478305
20.  Mechanism of Binding of Prothioconazole to Mycosphaerella graminicola CYP51 Differs from That of Other Azole Antifungals ▿  
Prothioconazole is one of the most important commercially available demethylase inhibitors (DMIs) used to treat Mycosphaerella graminicola infection of wheat, but specific information regarding its mode of action is not available in the scientific literature. Treatment of wild-type M. graminicola (strain IPO323) with 5 μg of epoxiconazole, tebuconazole, triadimenol, or prothioconazole ml−1 resulted in inhibition of M. graminicola CYP51 (MgCYP51), as evidenced by the accumulation of 14α-methylated sterol substrates (lanosterol and eburicol) and the depletion of ergosterol in azole-treated cells. Successful expression of MgCYP51 in Escherichia coli enabled us to conduct spectrophotometric assays using purified 62-kDa MgCYP51 protein. Antifungal-binding studies revealed that epoxiconazole, tebuconazole, and triadimenol all bound tightly to MgCYP51, producing strong type II difference spectra (peak at 423 to 429 nm and trough at 406 to 409 nm) indicative of the formation of classical low-spin sixth-ligand complexes. Interaction of prothioconazole with MgCYP51 exhibited a novel spectrum with a peak and trough observed at 410 nm and 428 nm, respectively, indicating a different mechanism of inhibition. Prothioconazole bound to MgCYP51 with 840-fold less affinity than epoxiconazole and, unlike epoxiconazole, tebuconazole, and triadimenol, which are noncompetitive inhibitors, prothioconazole was found to be a competitive inhibitor of substrate binding. This represents the first study to validate the effect of prothioconazole on the sterol composition of M. graminicola and the first on the successful heterologous expression of active MgCYP51 protein. The binding affinity studies documented here provide novel insights into the interaction of MgCYP51 with DMIs, especially for the new triazolinethione derivative prothioconazole.
PMCID: PMC3067226  PMID: 21169436
21.  Molecular Modelling of the Emergence of Azole Resistance in Mycosphaerella graminicola 
PLoS ONE  2011;6(6):e20973.
A structural rationale for recent emergence of azole (imidazole and triazole) resistance associated with CYP51 mutations in the wheat pathogen Mycosphaerella graminicola is presented, attained by homology modelling of the wild type protein and 13 variant proteins. The novel molecular models of M. graminicola CYP51 are based on multiple homologues, individually identified for each variant, rather than using a single structural scaffold, providing a robust structure-function rationale for the binding of azoles, including important fungal specific regions for which no structural information is available. The wild type binding pocket reveals specific residues in close proximity to the bound azole molecules that are subject to alteration in the variants. This implicates azole ligands as important agents exerting selection on specific regions bordering the pocket, that become the focus of genetic mutation events, leading to reduced sensitivity to that group of related compounds. Collectively, the models account for several observed functional effects of specific alterations, including loss of triadimenol sensitivity in the Y137F variant, lower sensitivity to tebuconazole of I381V variants and increased resistance to prochloraz of V136A variants. Deletion of Y459 and G460, which brings about removal of that entire section of beta turn from the vicinity of the binding pocket, confers resistance to tebuconazole and epoxiconazole, but sensitivity to prochloraz in variants carrying a combination of A379G I381V ΔY459/G460. Measurements of binding pocket volume proved useful in assessment of scope for general resistance to azoles by virtue of their accommodation without bonding interaction, particularly when combined with analysis of change in positions of key amino acids. It is possible to predict the likely binding orientation of an azole molecule in any of the variant CYPs, providing potential for an in silico screening system and reliable predictive approach to assess the probability of particular variants exhibiting resistance to particular azole fungicides.
PMCID: PMC3124474  PMID: 21738598
22.  Cyclization of a Cellular Dipentaenone by Streptomyces coelicolor Cytochrome P450 154A1 without Oxidation/Reduction 
Journal of the American Chemical Society  2010;132(43):15173-15175.
We report a comprehensive genetic, metabolomic, and biochemical study on the catalytic properties of Streptomyces coelicolor cytochrome P450 (P450) 154A1, known to have a unique heme orientation in its crystal structure. Deletion of the P450 154A1 gene compromised the long-term stability of the bacterial spores. A novel dipentaenone (1) with a high degree of conjugation was identified as an endogenous substrate of P450 154A1 using a metabolomics approach. The biotransformation of 1 by P450 154A1 was shown to be an unexpected intramolecular cyclization to a Paternò–Büchi-like product, without oxidation/reduction.
PMCID: PMC3118511  PMID: 20979426
23.  Complementation of a Saccharomyces cerevisiae ERG11/CYP51 (Sterol 14α-Demethylase) Doxycycline-Regulated Mutant and Screening of the Azole Sensitivity of Aspergillus fumigatus Isoenzymes CYP51A and CYP51B▿  
Antimicrobial Agents and Chemotherapy  2010;54(11):4920-4923.
Aspergillus fumigatus sterol 14α-demethylase isoenzymes CYP51A and CYP51B were heterologously expressed in a Saccharomyces cerevisiae mutant (YUG37-erg11), wherein native ERG11/CYP51 expression is controlled using a doxycycline-regulatable promoter. When cultured in the presence of doxycycline, recombinant YUG37-pcyp51A and YUG37-pcyp51B yeasts were able to synthesize ergosterol and grow; a control strain harboring reverse-oriented cyp51A could not. YUG37-pcyp51A and YUG37-pcyp51B constructs showed identical sensitivity to itraconazole, posaconazole, clotrimazole, and voriconazole. Conversely, YUG37-pcyp51A withstood 16-fold-higher concentrations of fluconazole than YUG37-pcyp51B (8 and 0.5 μg ml−1, respectively).
PMCID: PMC2976139  PMID: 20733045
24.  Identification and Characterization of Four Azole-Resistant erg3 Mutants of Candida albicans▿  
Antimicrobial Agents and Chemotherapy  2010;54(11):4527-4533.
Sterol analysis identified four Candida albicans erg3 mutants in which ergosta 7,22-dienol, indicative of perturbations in sterol Δ5,6-desaturase (Erg3p) activity, comprised >5% of the total sterol fraction. The erg3 mutants (CA12, CA488, CA490, and CA1008) were all resistant to fluconazole, voriconazole, itraconazole, ketoconazole, and clotrimazole under standard CLSI assay conditions (MIC values, ≥256, 16, 16, 8, and 1 μg ml−1, respectively). Importantly, CA12 and CA1008 retained an azole-resistant phenotype even when assayed in the presence of FK506, a multidrug efflux inhibitor. Conversely, CA488, CA490, and three comparator isolates (CA6, CA14, and CA177, in which ergosterol comprised >80% of the total sterol fraction and ergosta 7,22-dienol was undetectable) all displayed azole-sensitive phenotypes under efflux-inhibited assay conditions. Owing to their ergosterol content, CA6, CA14, and CA177 were highly sensitive to amphotericin B (MIC values, <0.25 μg ml−1); CA1008, in which ergosterol comprised <2% of the total sterol fraction, was less sensitive (MIC, 1 μg ml−1). CA1008 harbored multiple amino acid substitutions in Erg3p but only a single conserved polymorphism (E266D) in sterol 14α-demethylase (Erg11p). CA12 harbored one substitution (W332R) in Erg3p and no residue changes in Erg11p. CA488 and CA490 were found to harbor multiple residue changes in both Erg3p and Erg11p. The results suggest that missense mutations in ERG3 might arise in C. albicans more frequently than currently supposed and that the clinical significance of erg3 mutants, including those in which additional mechanisms also contribute to resistance, should not be discounted.
PMCID: PMC2976150  PMID: 20733039
25.  Azole Binding Properties of Candida albicans Sterol 14-α Demethylase (CaCYP51)▿  
Antimicrobial Agents and Chemotherapy  2010;54(10):4235-4245.
Purified Candida albicans sterol 14-α demethylase (CaCYP51) bound the CYP51 substrates lanosterol and eburicol, producing type I binding spectra with Ks values of 11 and 25 μM, respectively, and a Km value of 6 μM for lanosterol. Azole binding to CaCYP51 was “tight” with both the type II spectral intensity (ΔAmax) and the azole concentration required to obtain a half-ΔAmax being proportional to the CaCYP51 concentration. Tight binding of fluconazole and itraconazole was confirmed by 50% inhibitory concentration determinations from CYP51 reconstitution assays. CaCYP51 had similar affinities for clotrimazole, econazole, itraconazole, ketoconazole, miconazole, and voriconazole, with Kd values of 10 to 26 μM under oxidative conditions, compared with 47 μM for fluconazole. The affinities of CaCYP51 for fluconazole and itraconazole appeared to be 4- and 2-fold lower based on CO displacement studies than those when using direct ligand binding under oxidative conditions. Econazole and miconazole were most readily displaced by carbon monoxide, followed by clotrimazole, ketoconazole, and fluconazole, and then voriconazole (7.8 pmol min−1), but itraconzole could not be displaced by carbon monoxide. This work reports in depth the characterization of the azole binding properties of wild-type C. albicans CYP51, including that of voriconazole, and will contribute to effective screening of new therapeutic azole antifungal agents. Preliminary comparative studies with the I471T CaCYP51 protein suggested that fluconazole resistance conferred by this mutation was through a combination of increased turnover, increased affinity for substrate, and a reduced affinity for fluconazole in the presence of substrate, allowing the enzyme to remain functionally active, albeit at reduced velocity, at higher fluconazole concentrations.
PMCID: PMC2944560  PMID: 20625155

Results 1-25 (40)