PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (248)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Treatment Effects in a Transgenic Mouse Model of Alzheimer’s Disease: A Magnetic Resonance Spectroscopy Study after Passive Immunization 
Neuroscience  2013;259:94-100.
Despite the enormous public health impact of Alzheimer’s disease (AD), no disease modifying treatment has yet been proven to be efficacious in humans. A rate-limiting step in the discovery of potential therapies for humans is the absence of efficient non-invasive methods of evaluating drugs in animal models of disease. Magnetic resonance spectroscopy (MRS) provides noninvasive way to evaluate the animals at baseline, at the end of treatment, and serially to better understand treatment effects. In this study, MRS was assessed as potential outcome measure for detecting disease modification in a transgenic mouse model of AD. Passive immunization with two different antibodies, which have been previously shown to reduce plaque accumulation in transgenic AD mice, was used as intervention. Treatment effects were detected by MRS, and the most striking finding was attenuation of myo-inositol increases in APP-PS1 mice with both treatments. Additionally, a dose dependent effect was observed with one of the treatments for myo-inositol. MRS appears to be a valid in vivo measure of anti-Aβ therapeutic efficacy in pre-clinical studies. Because it is noninvasive, and can detect treatment effects, use of MRS-based endpoints could substantially accelerate drug discovery.
doi:10.1016/j.neuroscience.2013.11.052
PMCID: PMC3928682  PMID: 24316473
MRS; treatment detection; myo-inositol; N-acetylaspartate
2.  Head trauma and in vivo measures of amyloid and neurodegeneration in a population-based study 
Neurology  2014;82(1):70-76.
Objectives:
We determined whether head trauma was associated with amyloid deposition and neurodegeneration among individuals who were cognitively normal (CN) or had mild cognitive impairment (MCI).
Methods:
Participants included 448 CN individuals and 141 individuals with MCI from the Mayo Clinic Study of Aging who underwent Pittsburgh compound B (PiB)-PET, fluorodeoxyglucose-PET, and MRI. Head trauma was defined as a self-reported brain injury with at least momentary loss of consciousness or memory. Regression models examined whether head trauma was associated with each neuroimaging variable (assessed as continuous and dichotomous measures) in both CN and MCI participants, controlling for age and sex.
Results:
Among 448 CN individuals, 74 (17%) self-reported a head trauma. There was no difference in any neuroimaging measure between CN subjects with and without head trauma. Of 141 participants with MCI, 25 (18%) self-reported a head trauma. MCI participants with a head trauma had higher amyloid levels (by an average 0.36 standardized uptake value ratio units, p = 0.002).
Conclusions:
Among individuals with MCI, but not CN individuals, self-reported head trauma with at least momentary loss of consciousness or memory was associated with greater amyloid deposition, suggesting that head trauma may be associated with Alzheimer disease–related neuropathology. Differences between CN individuals and individuals with MCI raise questions about the relevance of head injury–PET abnormality findings in those with MCI.
doi:10.1212/01.wnl.0000438229.56094.54
PMCID: PMC3873622  PMID: 24371306
3.  Clinicopathologic assessment and imaging of tauopathies in neurodegenerative dementias 
Microtubule-associated protein tau encoded by the MAPT gene binds to microtubules and is important for maintaining neuronal morphology and function. Alternative splicing of MAPT pre-mRNA generates six major tau isoforms in the adult central nervous system resulting in tau proteins with three or four microtubule-binding repeat domains. In a group of neurodegenerative disorders called tauopathies, tau becomes aberrantly hyperphosphorylated and dissociates from microtubules, resulting in a progressive accumulation of intracellular tau aggregates. The spectrum of sporadic frontotemporal lobar degeneration associated with tau pathology includes progressive supranuclear palsy, corticobasal degeneration, and Pick’s disease. Alzheimer’s disease is considered the most prevalent tauopathy. This review is divided into two broad sections. In the first section we discuss the molecular classification of sporadic tauopathies, with a focus on describing clinicopathologic relationships. In the second section we discuss the neuroimaging methodologies that are available for measuring tau pathology (directly using tau positron emission tomography ligands) and tau-mediated neuronal injury (magnetic resonance imaging and fluorodeoxyglucose positron emission tomography). Both sections have detailed descriptions of the following neurodegenerative dementias – Alzheimer’s disease, progressive supranuclear palsy, corticobasal degeneration and Pick’s disease.
doi:10.1186/alzrt231
PMCID: PMC3978456  PMID: 24382028
4.  Microbleeds in the logopenic variant of primary progressive aphasia 
Background
Microbleeds have been associated with Alzheimer’s disease (AD), although it is unclear whether they occur in atypical presentations of AD, such as the logopenic variant of primary progressive aphasia (lvPPA). We aimed to assess the presence and clinical correlates of microbleeds in lvPPA.
Methods
Thirteen lvPPA subjects underwent 3T T2*-weighted and fluid-attenuated inversion recovery MRI and Pittsburgh Compound B (PiB) PET imaging. Microbleeds were identified on manual review and assigned a regional location. Total and regional white matter hyperintensity (WMH) burden was measured.
Results
Microbleeds were observed in four lvPPA subjects (31%); most common in frontal lobe. Subjects with microbleeds were older, more likely female, and had a greater burden of WMH than those without microbleeds. The regional distribution of microbleeds did not match the regional distribution of WMH. All cases were PiB-positive.
Conclusions
Microbleeds occur in approximately 1/3 subjects with lvPPA, with older women at the highest risk.
doi:10.1016/j.jalz.2013.01.006
PMCID: PMC3706560  PMID: 23562427
Logopenic variant of primary progressive aphasia; Alzheimer’s disease; microbleeds; white matter hyperintensities
5.  Biomarker Modeling of Alzheimer's Disease 
Neuron  2013;80(6):1347-1358.
Alzheimer's disease (AD) is a slowly progressing disorder in which pathophysiological abnormalities, detectable in vivo by biomarkers, precede overt clinical symptoms by many years to decades. Five AD biomarkers are sufficiently validated to have been incorporated into clinical diagnostic criteria and commonly used in therapeutic trials. Current AD biomarkers fall into 2 categories: biomarkers of amyloid-β plaques and of tau-related neurodegeneration. Three of the 5 are imaging measures and two are cerebrospinal fluid analytes. AD biomarkers do not evolve in an identical manner but rather in a sequential but temporally overlapping manner. Models of the temporal evolution of AD biomarkers can take the form of plots of biomarker severity (degree of abnormality) vs. time. In this review we discuss several time-dependent models of AD which take into consideration varying age of onset (early vs. late) and the influence of aging and co-occurring brain pathologies that commonly arise in the elderly.
doi:10.1016/j.neuron.2013.12.003
PMCID: PMC3928967  PMID: 24360540
Alzheimer's disease; Alzheimer's biomarkers; amyloid imaging; Alzheimer's imaging; Alzheimer's modeling; PET AND Alzheimer's; MRI AND Alzheimer's
6.  Association of Lifetime Intellectual Enrichment with Cognitive Decline in the Older Population 
JAMA neurology  2014;71(8):1017-1024.
IMPORTANCE
Intellectual lifestyle enrichment throughout life is increasingly viewed as a protective strategy against commonly observed cognitive decline in the elderly.
OBJECTIVE
To investigate the association of lifetime intellectual enrichment with baseline cognitive performance and rate of cognitive decline in a non-demented elderly population and to estimate difference (in years) associated with lifetime intellectual enrichment to the onset of cognitive impairment.
DESIGN, SETTING, PARTICIPANTS
Prospective analysis of subjects enrolled in the Mayo Clinic Study of Aging (MCSA), a longitudinal population-based study of cognitive aging in Olmsted County, Minnesota. We studied 1995 non-demented (1718 cognitively normal, 277 MCI) participants in MCSA who completed intellectual lifestyle measures at baseline and underwent at least one follow-up visit.
MAIN OUTCOMES AND MEASURES
We studied the effect of lifetime intellectual enrichment by separating the variables into two non-overlapping principal components: education/occupation-score and mid/late-life cognitive activity measure based on self-report questionnaires. A global cognitive Z-score served as our summary cognition measure. We used linear mixed-effects models to investigate the associations of demographic and intellectual enrichment measures with global cognitive Z-score trajectories.
RESULTS
Baseline cognitive performance was lower in older subjects and in those with lower education/occupation, lower mid/late-life cognitive activity, apolipoprotein E4 (APOE) genotype, and in men. The interaction between the two intellectual enrichment measures was significant such that the beneficial effect of mid/late-life cognitive activity on baseline cognitive performance was reduced with increasing education/occupation. Only baseline age, mid/late-life cognitive activity, and APOE4 genotype were significantly associated with longitudinal change in cognitive performance from baseline. For APOE4 carriers with high lifetime intellectual enrichment (75th percentile of both education/occupation and mid/late-life cognitive activity), the onset of cognitive impairment was about 8.7 years later compared with low lifetime intellectual enrichment (25th percentile of both education/occupation and mid/late-life cognitive activity) in an 80 year old subject.
CONCLUSIONS AND RELEVANCE
Higher levels of education/occupation were associated with higher levels of cognition. Higher levels of mid/late-life leisure activity were also associated with higher levels of cognition, but the slope of this relationship slightly increased over time. Lifetime intellectual enrichment might delay the onset of cognitive impairment and be used as a successful preventive intervention to reduce the impending dementia epidemic.
doi:10.1001/jamaneurol.2014.963
PMCID: PMC4266551  PMID: 25054282
7.  Functional Connectivity in Autosomal Dominant and Late-Onset Alzheimer Disease 
JAMA neurology  2014;71(9):1111-1122.
Importance
Autosomal dominant Alzheimer disease (ADAD) is caused by rare genetic mutations in three specific genes, in contrast to late-onset Alzheimer Disease (LOAD), which has a more polygenetic risk profile.
Design, Setting, and Participants
We analyzed functional connectivity in multiple brain resting state networks (RSNs) in a cross-sectional cohort of ADAD (N=79) and LOAD (N=444) human participants using resting state functional connectivity MRI (rs-fcMRI) at multiple international academic sites.
Main Outcomes and Measures
For both types of AD, we quantified and compared functional connectivity changes in RSNs as a function of dementia severity as measured by clinical dementia rating (CDR). In ADAD, we qualitatively investigated functional connectivity changes with respect to estimated years from onset of symptoms within five RSNs.
Results
Functional connectivity decreases with increasing CDR were similar for both LOAD and ADAD in multiple RSNs. Ordinal logistic regression models constructed in each type of AD accurately predicted CDR stage in the other, further demonstrating similarity of functional connectivity loss in each disease type. Among ADAD participants, functional connectivity in multiple RSNs appeared qualitatively lower in asymptomatic mutation carriers near their anticipated age of symptom onset compared to asymptomatic mutation non-carriers.
Conclusions and Relevance
rs-fcMRI changes with progressing AD severity are similar between ADAD and LOAD. Rs-fcMRI may be a useful endpoint for LOAD and ADAD therapy trials. ADAD disease process may be an effective model for LOAD disease process.
doi:10.1001/jamaneurol.2014.1654
PMCID: PMC4240274  PMID: 25069482
Resting-state functional connectivity; autosomal dominant Alzheimer's disease; late-onset Alzheimer's disease; default mode network; apolipoprotein E (APOE)
8.  PART and SNAP 
Acta Neuropathologica  2014;128(6):773-776.
doi:10.1007/s00401-014-1362-3
PMCID: PMC4231211  PMID: 25380757
9.  MRI and pathology of REM sleep behavior disorder in dementia with Lewy bodies 
Neurology  2013;81(19):1681-1689.
Objective:
To determine structural MRI and digital microscopic characteristics of REM sleep behavior disorder in individuals with low-, intermediate-, and high-likelihood dementia with Lewy bodies (DLB) at autopsy.
Methods:
Patients with autopsy-confirmed low-, intermediate-, and high-likelihood DLB, according to the probability statement recommended by the third report of the DLB Consortium, and antemortem MRI, were identified (n = 75). The clinical history was assessed for presence (n = 35) and absence (n = 40) of probable REM sleep behavior disorder (pRBD), and patients' antemortem MRIs were compared using voxel-based morphometry. Pathologic burdens of phospho-tau, β-amyloid, and α-synuclein were measured in regions associated with early neuropathologic involvement, the hippocampus and amygdala.
Results:
pRBD was present in 21 patients (60%) with high-likelihood, 12 patients (34%) with intermediate-likelihood, and 2 patients (6%) with low-likelihood DLB. Patients with pRBD were younger, more likely to be male (p ≤ 0.001), and had a more frequent neuropathologic diagnosis of diffuse (neocortical) Lewy body disease. In the hippocampus and amygdala, phospho-tau and β-amyloid burden were lower in patients with pRBD compared with those without pRBD (p < 0.01). α-Synuclein burden did not differ in the hippocampus, but trended in the amygdala. Patients without pRBD had greater atrophy of temporoparietal cortices, hippocampus, and amygdala (p < 0.001) than those with pRBD; atrophy of the hippocampus (p = 0.005) and amygdala (p = 0.02) were associated with greater phospho-tau burdens in these regions.
Conclusion:
Presence of pRBD is associated with a higher likelihood of DLB and less severe Alzheimer-related pathology in the medial temporal lobes, whereas absence of pRBD is characterized by Alzheimer-like atrophy patterns on MRI and increased phospho-tau burden.
doi:10.1212/01.wnl.0000435299.57153.f0
PMCID: PMC3812105  PMID: 24107861
10.  Diabetes and Elevated HbA1c levels are Associated with Brain Hypometabolism but not Amyloid Accumulation 
Dysfunctional insulin signaling may affect brain metabolism or amyloid deposition. We investigated the associations of type 2 diabetes with amyloid accumulation measured using 11C-Pittsburgh Compound B (PiB) and brain hypometabolism measured using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET).
Methods
We studied a sample of non-demented participants from the population-based Mayo Clinic Study of Aging. All subjects underwent MRI, amyloid PET and FDG PET. Alzheimer’s disease (AD) signature and region of interest (ROI) measures for PiB retention ratio and FDG ratio were measured. Diabetes was assessed from the Rochester Epidemiology Project medical records-linkage system.
Results
Among 749 participants (median age 79.0 years; 56.5% male, 81.0% cognitively normal; 20.6% diabetics), FDG hypometabolism (FDG ratio < 1.31) in the AD signature meta-ROI was more common in diabetics (48.1%) than in non-diabetics (28.9%; p <0.001). The median FDG ratio was lower in diabetics vs. non-diabetics in the AD signature meta-ROI (1.32 vs. 1.40, p < 0.001), and in the angular (1.40 vs. 1.48, p < 0.001) and posterior cingulate gyri ROIs (1.63 vs. 1.72, p < 0.001). The odds ratio (OR [95% confidence interval]) for abnormal AD signature FDG hypometabolism was elevated (OR, 2.28 [1.56, 3.33]) in diabetics vs. non-diabetics after adjustment for age, sex, and education, and after additional adjustment for Apolipoprotein ε4 allele, glycemic level, and cognitive status (OR, 1.69 [1.10, 2.60]). However, AD signature PiB retention ratio was similar in diabetics vs. non-diabetics (OR, 1.03 [0.71, 1.51]; p = 0.87). In post-hoc analyses in non-diabetics, a 1% increase in HBA1c was associated with greater AD signature hypometabolism in cognitively normal subjects (OR, 1.93 [1.03, 3.62; p = 0.04]) and in the total cohort (OR 1.59 [0.92, 2.75; p = 0.10).
Conclusion
Diabetes and poor glycemic control in non-diabetics may enhance glucose hypometabolism in AD signature regions. These factors should be investigated in longitudinal studies for their role in detecting onset of symptoms in AD.
doi:10.2967/jnumed.113.132647
PMCID: PMC4011952  PMID: 24652830
Diabetes; cerebral glucose metabolism; FDG- and PiB-PET imaging; hemoglobin A1c; amyloid accumulation
11.  Quantitative neurofibrillary tangle density and brain volumetric MRI analyses in Alzheimer’s disease presenting as logopenic progressive aphasia 
Brain and language  2013;127(2):10.1016/j.bandl.2013.02.003.
Neurofibrillary tangles (NFTs) are one of the key histological lesions of Alzheimer’s disease (AD) and are associated with brain atrophy. We assessed regional NFT density in 30 patients with AD, 10 of which presented as the logopenic variant of primary progressive aphasia (lvPPA) and 20 that presented as dementia of the Alzheimer’s type (DAT). Regional grey matter volumes were measured using antemortem MRI. NFT density was significantly higher in left temporoparietal cortices in lvPPA compared to DAT, with no differences observed in hippocampus. There was a trend for the ratio of temporoparietal-to-hippocampal NFT density to be higher in lvPPA. The imaging findings mirrored the pathological findings, with smaller left temporoparietal volumes observed in lvPPA compared to DAT, and no differences observed in hippocampal volume. This study demonstrates that lvPPA is associated with a phenomenon of enhanced temporoparietal neurodegeneration, a finding that improves our understanding of the biological basis of lvPPA.
doi:10.1016/j.bandl.2013.02.003
PMCID: PMC3840097  PMID: 23541297
Primary progressive aphasia; Logopenic variant of primary progressive aphasia; Alzheimer’s disease; Neurofibrillary tangles; Hippocampus; MRI; Apolipoprotein E; TDP-43; Voxel-based morphometry; Alzheimer’s dementia
12.  Identification of an atypical variant of logopenic progressive aphasia 
Brain and language  2013;127(2):10.1016/j.bandl.2013.02.007.
The purpose of this study was to examine the association between aphasia severity and neurocognitive function, disease duration and temporoparietal atrophy in 21 individuals with the logopenic variant of primary progressive aphasia (lvPPA). We found significant correlations between aphasia severity and neurocognitive severity as well as temporoparietal atrophy; but not disease duration. Cluster analysis identified three variants of lvPPA: (1) subjects with mild aphasia and short disease duration (mild typical lvPPA); (2) subjects with mild aphasia and long disease duration (mild atypical lvPPA); and, (3) subjects with severe aphasia and relatively long disease duration (severe typical lvPPA). All three variants showed temporoparietal atrophy, with the mild atypical group showing the least atrophy despite the longest disease duration. The mild atypical group also showed mild neuropsychological impairment. The subjects with mild aphasia and neuropsychological impairment despite long disease duration may represent a slowly progressive variant of lvPPA.
doi:10.1016/j.bandl.2013.02.007
PMCID: PMC3725183  PMID: 23566690
Primary progressive aphasia; Logopenic aphasia; Neurocognitive impairment; Temporoparietal atrophy; Voxel-based morphometry
13.  Cerebral amyloid PET imaging in Alzheimer's disease 
Acta neuropathologica  2013;126(5):10.1007/s00401-013-1185-7.
The devastating effects of the still incurable Alzheimer's disease (AD) project an ever increasing shadow of burden on the health care system and society in general. In this ominous context, amyloid (Aβ) imaging is considered by many of utmost importance for progress towards earlier AD diagnosis and for potential development of effective therapeutic interventions. Amyloid imaging positron emission tomography procedures offer the opportunity for accurate mapping and quantification of amyloid-Aβ neuroaggregate deposition in the living brain of AD patients. This review analyzes the perceived value of current Aβ imaging probes and their clinical utilization and, based on amyloid imaging results, offers a hypothesis on the effects of amyloid deposition on the biology of AD and its progression. It also analyzes lingering questions permeating the field of amyloid imaging on the apparent contradictions between imaging results and known neuropathology brain regional deposition of Aβ aggregates. As a result, the review also discusses literature evidence as to whether brain Aβ deposition is truly visualized and measured with these amyloid imaging agents, which would have significant implications in the understanding of the biological AD cascade and in the monitoring of therapeutic interventions with these surrogate Aβ markers.
doi:10.1007/s00401-013-1185-7
PMCID: PMC3887147  PMID: 24100688
Aβ; Alzheimer's disease; Amyloid imaging; Florbetapir; Neuropathological correlations; Neuropathological diagnostic criteria; Pittsburgh Compound B
14.  Effects of aerobic exercise on cognition and hippocampal volume in Alzheimer’s disease: study protocol of a randomized controlled trial (The FIT-AD trial) 
Trials  2014;15(1):394.
Background
Alzheimer’s disease, a global public health issue, accounts for 60 to 80% of all dementias. Alzheimer’s disease primarily causes cognitive impairment and drugs have only modest short-term effects, highlighting a pressing need to develop effective interventions. Aerobic exercise holds promise for treating cognitive impairment in Alzheimer’s disease through biologically sound mechanisms. Nonetheless, aerobic exercise studies in Alzheimer’s disease are limited with mixed findings.
Methods/Design
This pilot randomized controlled trial will investigate the effects of a 6-month, individualized, moderate-intensity cycling intervention (20 to 50 minutes per session, 3 times a week) on cognition and hippocampal volume in community-dwelling older adults with mild-to-moderate Alzheimer’s disease. The specific aims are to: 1) determine the immediate effect of the cycling intervention on cognition in Alzheimer’s disease; 2) examine if the cycling intervention slows cognitive decline in Alzheimer’s disease from baseline to 12 months; and 3) assess the effect of aerobic exercise on hippocampal volume over 12 months. Ninety subjects will be randomized on a 2:1 allocation ratio to cycling or attention control (low-intensity stretching) and followed for another 6 months. Allocations will be concealed to all investigators and outcome assessors will be blinded to group assignments and previous data. Cognition will be measured by the Alzheimer’s disease Assessment Scale-Cognition at baseline before randomization and at 3, 6, 9, and 12 months. Hippocampal volume will be measured by magnetic resonance imaging at baseline and 6 and 12 months. The sample size of 90 will give 80% power to detect a 2.5-point difference in within-group changes in the Alzheimer’s disease Assessment Scale-Cognition at 6 months for the cycling group.
Discussion
Findings from this study will address the critical gap of exercise efficacy in Alzheimer’s disease and use of magnetic resonance imaging as an outcome measure in clinical trials. This study will provide a potential treatment that may increase physical function and quality of life and curb the prohibitive costs for the growing dementia population.
Trial registration
Primary registration: (NCT01954550; date of registration: 20 September 2013). Secondary registration: (NCT01954550; date of registration: 1 October 2013).
doi:10.1186/1745-6215-15-394
PMCID: PMC4283145  PMID: 25304364
Exercise; Alzheimer’s disease; Dementia; Physical activity; Cognition; Hippocampal volume; Imaging
15.  Migraine and white matter hyperintensities 
Neurology  2013;81(15):1308-1313.
Objective:
Migraine is associated with white matter hyperintensities (WMH) cross-sectionally, but its effect on WMH progression is uncertain.
Methods:
Participants in the Atherosclerosis Risk in Communities cohort study (n = 10,924) completed a standardized headache questionnaire between 1993 and 1995. A subset of participants (n = 1,028) received 2 MRIs 8 to 12 years apart: once at the time of headache ascertainment, and again from 2004 to 2006. WMH were quantified using both a visually graded score (0–9) and semiautomated volumetric analysis. Linear and logistic regression models adjusted for age, sex, and other vascular risk factors were constructed.
Results:
Individuals who had migraine without aura were cross-sectionally associated with an 87% greater odds of having a WMH score ≥3 than individuals without headache (adjusted odds ratio = 1.87; 95% confidence interval [CI]: 1.04, 3.37). Participants with migraine had an average of 2.65 cm3 more WMH than those without headache (95% CI: 0.06, 5.24). However, there was no significant difference in WMH progression over the study period between individuals with and without migraine (1.58 cm3 more progression for individuals with migraine compared to those without; 95% CI: −0.37, 3.53).
Conclusion:
Migraine is associated with WMH volume cross-sectionally but not with WMH progression over time. This suggests that the association between migraine and WMH is stable in older age and may be primarily attributable to changes occurring earlier in life, although further work is needed to confirm these findings.
doi:10.1212/WNL.0b013e3182a8235b
PMCID: PMC3806921  PMID: 23975874
16.  Focal Hemosiderin Deposits and β-Amyloid Load in the ADNI Cohort 
Objective
Prevalence and risk factors for focal hemosiderin deposits are important considerations when planning amyloid–modifying trials for treatment and prevention of Alzheimer’s disease (AD).
Methods
Subjects were cognitively normal (n=171), early-mild cognitive impairment (MCI) (n=240), late-MCI (n=111) and AD (n=40) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Microhemorrhages and superficial siderosis were assessed at baseline and on all available MRIs at 3, 6 and 12 months. β-amyloid load was assessed with 18F-florbetapir PET.
Results
Prevalence of superficial siderosis was 1% and prevalence of microhemorrhages was 25% increasing with age (p<0.001) and β-amyloid load (p<0.001). Topographic densities of microhemorrhages were highest in the occipital lobes and lowest in the deep/infratentorial regions. A greater number of microhemorrhages at baseline was associated with a greater annualized rate of additional microhemorrhages by last follow-up (rank correlation=0.49;P<0.001).
Conclusion
Focal hemosiderin deposits are relatively common in the ADNI cohort and are associated with β-amyloid load.
doi:10.1016/j.jalz.2012.10.011
PMCID: PMC3770782  PMID: 23375568
ADNI; microhemorrhage; superficial siderosis; MRI; Amyloid; PET; Florbetapir; Alzheimer’s disease; mild cognitive impairment; early mild cognitive impairment
17.  Midbrain atrophy is not a biomarker of PSP pathology 
Background
Midbrain atrophy is a characteristic feature of progressive supranuclear palsy (PSP), although it is unclear whether it is associated with the PSP syndrome (PSPS) or PSP pathology. We aimed to determine whether midbrain atrophy is a useful biomarker of PSP pathology, or whether it is only associated with typical PSPS.
Methods
We identified all autopsy-confirmed subjects with the PSP clinical phenotype (i.e. PSPS) or PSP pathology and a volumetric MRI. Of 24 subjects with PSP pathology, 11 had a clinical diagnosis of PSPS (PSP-PSPS), and 13 had a non-PSPS clinical diagnosis (PSP-other). Three subjects had PSPS and corticobasal degeneration pathology (CBD-PSPS). Healthy control and disease control groups (i.e. a group without PSPS or PSP pathology) and a group with CBD pathology and corticobasal syndrome (CBD-CBS) were selected. Midbrain area was measured in all subjects.
Results
Midbrain area was reduced in each group with clinical PSPS (with and without PSP pathology). The group with PSP pathology and non-PSPS clinical syndromes did not show reduced midbrain area. Midbrain area was smaller in the subjects with PSPS compared to those without PSPS (p<0.0001), with an area under the receiver-operator-curve of 0.99 (0.88,0.99). A midbrain area cut-point of 92 mm2 provided optimum sensitivity (93%) and specificity (89%) for differentiation.
Conclusion
Midbrain atrophy is associated with the clinical presentation of PSPS, but not with the pathological diagnosis of PSP in the absence of the PSPS clinical syndrome. This finding has important implications for the utility of midbrain measurements as diagnostic biomarkers for PSP pathology.
doi:10.1111/ene.12212
PMCID: PMC3773014  PMID: 23746093
Progressive supranuclear palsy; tau; neuropathology; MRI; midbrain
18.  Angular versus spatial resolution trade-offs for diffusion imaging under time constraints 
Human brain mapping  2012;34(10):2688-2706.
Diffusion weighted magnetic resonance imaging (DW-MRI) are now widely used to assess brain integrity in clinical populations. The growing interest in mapping brain connectivity has made it vital to consider what scanning parameters affect the accuracy, stability, and signal-to-noise of Diffusion measures. Trade-offs between scan parameters can only be optimized if their effects on various commonly derived measures are better understood. To explore angular versus spatial resolution trade-offs in standard tensor-derived measures, and in measures that use the full angular information in diffusion signal, we scanned eight subjects twice, two weeks apart, using three protocols that took the same amount of time (7 minutes). Scans with 3, 2.7, 2.5 mm isotropic voxels were collected using 48, 41, and 37 diffusion-sensitized gradients to equalize scan times. A specially designed DTI phantom was also scanned with the same protocols, and different b-values. We assessed how several diffusion measures including fractional anisotropy (FA), mean diffusivity (MD), and the full 3D orientation distribution function (ODF) depended on the spatial/angular resolution and the SNR. We also created maps of stability over time in the FA, MD, ODF, skeleton FA of 14 TBSS-derived ROIs, and an information uncertainty index derived from the tensor distribution function, which models the signal using a continuous mixture of tensors. In scans of the same duration, higher angular resolution and larger voxels boosted SNR and improved stability over time. The increased partial voluming in large voxels also led to bias in estimating FA, but this was partially addressed by using “beyond-tensor” models of diffusion.
doi:10.1002/hbm.22094
PMCID: PMC3468661  PMID: 22522814
High Angular Resolution Diffusion Imaging; Diffusion Tensor Imaging; Spatial Resolution; Angular Resolution; Orientation Distribution Function; Tensor Distribution Function; reproducibility
19.  APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study 
Molecular psychiatry  2013;19(3):351-357.
Deposition of amyloid-β (Aβ) in the cerebral cortex is thought to be a pivotal event in Alzheimer’s disease (AD) pathogenesis with a significant genetic contribution. Molecular imaging can provide an early noninvasive phenotype but small samples have prohibited genome-wide association studies (GWAS) of cortical Aβ load until now. We employed florbetapir (18F) positron emission tomography (PET) imaging to assess brain Aβ levels in vivo for 555 participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). More than six million common genetic variants were tested for association to quantitative global cortical Aβ load controlling for age, gender, and diagnosis. Independent genome-wide significant associations were identified on chromosome 19 within APOE (rs429358, p = 5.5 × 10−14) and on chromosome 3 upstream of BCHE (rs509208, p = 2.7 × 10−8) in a region previously associated with serum butyrylcholinesterase activity. Together, these loci explained 15% of the variance in cortical Aβ levels in this sample (APOE 10.7%, BCHE 4.3%). Suggestive associations were identified within ITGA6, near EFNA5, EDIL3, ITGA1, PIK3R1, NFIB, and ARID1B, and between NUAK1 and C12orf75. These results confirm the association of APOE with Aβ deposition and represent the largest known effect of BCHE on an AD-related phenotype. Butyrylcholinesterase has been found in senile plaques and this new association of genetic variation at the BCHE locus with Aβ burden in humans may have implications for potential disease-modifying effects of butyrylcholinesterase-modulating agents in the AD spectrum.
doi:10.1038/mp.2013.19
PMCID: PMC3661739  PMID: 23419831
Alzheimer’s disease (AD); amyloid; apolipoprotein E (APOE); butyrylcholinesterase (BCHE); florbetapir (AV-45); genome-wide association study (GWAS)
20.  The Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception 
The Alzheimer's Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease (AD). The study aimed to enroll 400 subjects with early mild cognitive impairment (MCI), 200 subjects with early AD, and 200 normal control subjects; $67 million funding was provided by both the public and private sectors, including the National Institute on Aging, 13 pharmaceutical companies, and 2 foundations that provided support through the Foundation for the National Institutes of Health. This article reviews all papers published since the inception of the initiative and summarizes the results as of February 2011. The major accomplishments of ADNI have been as follows: (1) the development of standardized methods for clinical tests, magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF) biomarkers in a multicenter setting; (2) elucidation of the patterns and rates of change of imaging and CSF biomarker measurements in control subjects, MCI patients, and AD patients. CSF biomarkers are consistent with disease trajectories predicted by β-amyloid cascade (Hardy, J Alzheimers Dis 2006;9(Suppl 3):151–3) and tau-mediated neurodegeneration hypotheses for AD, whereas brain atrophy and hypometabolism levels show predicted patterns but exhibit differing rates of change depending on region and disease severity; (3) the assessment of alternative methods of diagnostic categorization. Currently, the best classifiers combine optimum features from multiple modalities, including MRI, [18F]-fluorodeoxyglucose-PET, CSF biomarkers, and clinical tests; (4) the development of methods for the early detection of AD. CSF biomarkers, β-amyloid 42 and tau, as well as amyloid PET may reflect the earliest steps in AD pathology in mildly symptomatic or even nonsymptomatic subjects, and are leading candidates for the detection of AD in its preclinical stages; (5) the improvement of clinical trial efficiency through the identification of subjects most likely to undergo imminent future clinical decline and the use of more sensitive outcome measures to reduce sample sizes. Baseline cognitive and/or MRI measures generally predicted future decline better than other modalities, whereas MRI measures of change were shown to be the most efficient outcome measures; (6) the confirmation of the AD risk loci CLU, CR1, and PICALM and the identification of novel candidate risk loci; (7) worldwide impact through the establishment of ADNI-like programs in Europe, Asia, and Australia; (8) understanding the biology and pathobiology of normal aging, MCI, and AD through integration of ADNI biomarker data with clinical data from ADNI to stimulate research that will resolve controversies about competing hypotheses on the etiopathogenesis of AD, thereby advancing efforts to find disease-modifying drugs for AD; and (9) the establishment of infrastructure to allow sharing of all raw and processed data without embargo to interested scientific investigators throughout the world. The ADNI study was extended by a 2-year Grand Opportunities grant in 2009 and a renewal of ADNI (ADNI-2) in October 2010 through to 2016, with enrollment of an additional 550 participants.
doi:10.1016/j.jalz.2013.05.1769
PMCID: PMC4108198  PMID: 23932184
Alzheimer's disease; Mild cognitive impairment; Amyloid; Tau; Biomarker
21.  Mapping Dynamic Changes in Ventricular Volume onto Baseline Cortical Surfaces in Normal Aging, MCI, and Alzheimer’s Disease* 
Ventricular volume (VV) is a powerful global indicator of brain tissue loss on MRI in normal aging and dementia. VV is used by radiologists in clinical practice and has one of the highest obtainable effect sizes for tracking brain change in clinical trials, but it is crucial to relate VV to structural alterations underlying clinical symptoms. Here we identify patterns of thinner cortical gray matter (GM) associated with dynamic changes in lateral VV at 1-year (N=677) and 2-year (N=536) intervals, in the ADNI cohort. People with faster VV loss had thinner baseline cortical GM in temporal, inferior frontal, inferior parietal, and occipital regions (controlling for age, sex, diagnosis). These findings show the patterns of relative cortical atrophy that predict later ventricular enlargement, further validating the use of ventricular segmentations as biomarkers. We may also infer specific patterns of regional cortical degeneration (and perhaps functional changes) that relate to VV expansion.
doi:10.1007/978-3-319-02126-3_9
PMCID: PMC4138607  PMID: 25152934
imaging biomarkers*; brain imaging; magnetic resonance imaging; quantitative image analysis; statistical analysis; temporal/longitudinal image series analysis
22.  Improved DTI registration allows voxel-based analysis that outperforms Tract-Based Spatial Statistics 
NeuroImage  2014;94:65-78.
Tract-Based Spatial Statistics (TBSS) is a popular software pipeline to coregister sets of diffusion tensor Fractional Anisotropy (FA) images for performing voxel-wise comparisons. It is primarily defined by its skeleton projection step intended to reduce effects of local misregistration. A white matter “skeleton” is computed by morphological thinning of the inter-subject mean FA, and then all voxels are projected to the nearest location on this skeleton. Here we investigate several enhancements to the TBSS pipeline based on recent advances in registration for other modalities, principally based on groupwise registration with the ANTS-SyN algorithm. We validate these enhancements using simulation experiments with synthetically-modified images. When used with these enhancements, we discover that TBSS's skeleton projection step actually reduces algorithm accuracy, as the improved registration leaves fewer errors to warrant correction, and the effects of this projection's compromises become stronger than those of its benefits. In our experiments, our proposed pipeline without skeleton projection is more sensitive for detecting true changes and has greater specificity in resisting false positives from misregistration. We also present comparative results of the proposed and traditional methods, both with and without the skeleton projection step, on three real-life datasets: two comparing differing populations of Alzheimer's disease patients to matched controls, and one comparing progressive supranuclear palsy patients to matched controls. The proposed pipeline produces more plausible results according to each disease's pathophysiology.
doi:10.1016/j.neuroimage.2014.03.026
PMCID: PMC4137565  PMID: 24650605
DTI; Fractional Anisotropy; Voxel-based analysis; VBM; TBSS; Registration
23.  Breakdown of Brain Connectivity Between Normal Aging and Alzheimer's Disease: A Structural k-Core Network Analysis 
Brain Connectivity  2013;3(4):407-422.
Abstract
Brain connectivity analyses show considerable promise for understanding how our neural pathways gradually break down in aging and Alzheimer's disease (AD). Even so, we know very little about how the brain's networks change in AD, and which metrics are best to evaluate these changes. To better understand how AD affects brain connectivity, we analyzed anatomical connectivity based on 3-T diffusion-weighted images from 111 subjects (15 with AD, 68 with mild cognitive impairment, and 28 healthy elderly; mean age, 73.7±7.6 SD years). We performed whole brain tractography based on the orientation distribution functions, and compiled connectivity matrices showing the proportions of detected fibers interconnecting 68 cortical regions. We computed a variety of measures sensitive to anatomical network topology, including the structural backbone—the so-called “k-core”—of the anatomical network, and the nodal degree. We found widespread network disruptions, as connections were lost in AD. Among other connectivity measures showing disease effects, network nodal degree, normalized characteristic path length, and efficiency decreased with disease, while normalized small-worldness increased, in the whole brain and left and right hemispheres individually. The normalized clustering coefficient also increased in the whole brain; we discuss factors that may cause this effect. The proportions of fibers intersecting left and right cortical regions were asymmetrical in all diagnostic groups. This asymmetry may intensify as disease progressed. Connectivity metrics based on the k-core may help understand brain network breakdown as cognitive impairment increases, revealing how degenerative diseases affect the human connectome.
doi:10.1089/brain.2012.0137
PMCID: PMC3749712  PMID: 23701292
Alzheimer's disease; asymmetry; brain connectivity; diffusion tensor imaging; efficiency; k-core; mild cognitive impairment; nodal degree; small-world; tractography
24.  Criteria for Mild Cognitive Impairment Due to Alzheimer’s Disease in the Community 
Annals of neurology  2013;74(2):199-208.
Objective
The newly proposed National Institute on Aging-Alzheimer’s Association (NIA-AA) criteria for mild cognitive impairment (MCI) due to Alzheimer’s disease (AD) suggest a combination of clinical features and biomarker measures, but their performance in the community is not known.
Methods
The Mayo Clinic Study of Aging (MCSA) is a population-based longitudinal study of non-demented subjects in Olmsted County, Minnesota. A sample of 154 MCI subjects from the MCSA was compared to a sample of 58 amnestic MCI subjects from the Alzheimer’s Disease Neuroimaging Initiative 1 (ADNI 1) to assess the applicability of the criteria in both settings and to assess their outcomes.
Results
In the MCSA, 14% and in ADNI 1 16% of subjects were biomarker negative. In addition, 14% of the MCSA and 12% of ADNI 1 subjects had evidence for amyloid deposition only, while 43% of MCSA and 55% of ADNI 1 subjects had evidence for amyloid deposition plus neurodegeneration (MRI atrophy, FDG PET hypometabolism or both). However, a considerable number of subjects had biomarkers inconsistent with the proposed AD model, e.g., 29% of MCSA subjects and 17% of the ADNI 1 subjects had evidence for neurodegeneration without amyloid deposition. These subjects may not be on an AD pathway. Neurodegeneration appears to be a key factor in predicting progression relative to amyloid deposition alone.
Interpretation
The NIA-AA criteria apply to most MCI subjects in both the community and clinical trials settings however, a sizeable proportion of subjects had conflicting biomarkers which may be very important and need to be explored.
doi:10.1002/ana.23931
PMCID: PMC3804562  PMID: 23686697
25.  Syndromes dominated by apraxia of speech show distinct characteristics from agrammatic PPA 
Neurology  2013;81(4):337-345.
Objective:
We assessed whether clinical and imaging features of subjects with apraxia of speech (AOS) more severe than aphasia (dominant AOS) are more similar to agrammatic primary progressive aphasia (agPPA) or to primary progressive AOS (PPAOS).
Methods:
Sixty-seven subjects (PPAOS = 18, dominant AOS = 10, agPPA = 9, age-matched controls = 30) who all had volumetric MRI, diffusion tensor imaging, F18-fluorodeoxyglucose and C11-labeled Pittsburgh compound B (PiB)-PET scanning, as well as neurologic and speech and language assessments, were included in this case-control study. AOS was classified as either type 1, predominated by sound distortions and distorted sound substitutions, or type 2, predominated by syllabically segmented prosodic speech patterns.
Results:
The dominant AOS subjects most often had AOS type 2, similar to PPAOS. In contrast, agPPA subjects most often had type 1 (p = 0.01). Both dominant AOS and PPAOS showed focal imaging abnormalities in premotor cortex, whereas agPPA showed widespread involvement affecting premotor, prefrontal, temporal and parietal lobes, caudate, and insula. Only the dominant AOS and PPAOS groups showed midbrain atrophy compared with controls. No differences were observed in PiB binding across all 3 groups, with the majority being PiB negative.
Conclusion:
These results suggest that dominant AOS is more similar to PPAOS than agPPA, with dominant AOS and PPAOS exhibiting a clinically distinguishable subtype of progressive AOS compared with agPPA.
doi:10.1212/WNL.0b013e31829c5ed5
PMCID: PMC3772832  PMID: 23803320

Results 1-25 (248)