PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  ST6Gal-I protein expression is upregulated in human epithelial tumors and correlates with stem cell markers in normal tissues and colon cancer cell lines 
Cancer research  2013;73(7):2368-2378.
The ST6Gal-I sialyltransferase adds an α2–6-linked sialic acid to the N-glycans of certain receptors. ST6Gal-I mRNA has been reported to be upregulated in human cancer, but a prior lack of antibodies has limited immunochemical analysis of the ST6Gal-I protein. Here we show upregulated ST6Gal-I protein in several epithelial cancers, including many colon carcinomas. In normal colon, ST6Gal-I localized selectively to the base of crypts, where stem/progenitor cells are found, and the tissue staining patterns were similar to the established stem cell marker ALDH1. Similarly, ST6Gal-I expression was restricted to basal epidermal layers in skin, another stem/progenitor cell compartment. ST6Gal-I was highly expressed in induced pluripotent stem (iPS) cells, with no detectable expression in the fibroblasts from which iPS cells were derived. On the basis of these observations we investigated further an association of ST6Gal-I with cancer stem cells (CSCs). Selection of irinotecan resistance in colon carcinoma cells led to a greater proportion of CSCs compared with parental cells, as measured by the CSC markers CD133 and ALDH1 activity (Aldefluor). These chemoresistant cells exhibited a corresponding upregulation of ST6Gal-I expression. Conversely, shRNA-mediated attenuation of ST6Gal-I in colon carcinoma cells with elevated endogenous expression decreased the number of CD133/ALDH1-positive cells present in the cell population. Collectively, our results suggest that ST6Gal-I promotes tumorigenesis and may serve as a regulator of the stem cell phenotype in both normal and cancer cell populations.
doi:10.1158/0008-5472.CAN-12-3424
PMCID: PMC4038408  PMID: 23358684
glycosylation; ST6Gal-I; colon carcinoma; stem cells; cancer stem cells
2.  Engineering nanocages with polyglutamate domains for coupling to hydroxyapatite biomaterials and allograft bone 
Biomaterials  2013;34(10):2455-2462.
Hydroxyapatite (HA) is the principal constituent of bone mineral, and synthetic HA is widely used as a biomaterial for bone repair. Previous work has shown that polyglutamate domains bind selectively to HA and that these domains can be utilized to couple bioactive peptides onto many different HA-containing materials. In the current study we have adapted this technology to engineer polyglutamate domains into cargo-loaded nanocage structures derived from the P22 bacteriophage. P22 nanocages have demonstrated significant potential as a drug delivery system due to their stability, large capacity for loading with a diversity of proteins and other types of cargo, and ability to resist degradation by proteases. Site-directed mutagenesis was used to modify the primary coding sequence of the P22 coat protein to incorporate glutamate-rich regions. Relative to wild-type P22, the polyglutamate-modified nanocages (E2-P22) exhibited increased binding to ceramic HA disks, particulate HA and allograft bone. Furthermore, E2-P22 binding was HA selective, as evidenced by negligible binding of the nanocages to non-HA materials including polystyrene, agarose, and polycaprolactone (PCL). Taken together these results establish a new mechanism for the directed coupling of nanocage drug delivery systems to a variety of HA-containing materials commonly used in diverse bone therapies.
doi:10.1016/j.biomaterials.2012.12.026
PMCID: PMC3561465  PMID: 23312905
3.  Polyglutamate directed coupling of bioactive peptides for the delivery of osteoinductive signals on allograft bone 
Biomaterials  2012;34(5):1506-1513.
Allograft bone is commonly used as an alternative to autograft, however allograft lacks many osteoinductive factors present in autologous bone due to processing. In this study, we investigated a method to reconstitute allograft with osteoregenerative factors. Specifically, an osteoinductive peptide from collagen I, DGEA, was engineered to express a heptaglutamate (E7) domain, which binds the hydroxyapatite within bone mineral. Addition of E7 to DGEA resulted in 9× greater peptide loading on allograft, and significantly greater retention after a 5-day interval with extensive washing. When factoring together greater initial loading and retention, the E7 domain directed a 45-fold enhancement of peptide density on the allograft surface. Peptide-coated allograft was also implanted subcutaneously into rats and it was found that E7DGEA was retained in vivo for at least 3 months. Interestingly, E7DGEA peptides injected intravenously accumulated within bone tissue, implicating a potential role for E7 domains in drug delivery to bone. Finally, we determined that, as with DGEA, the E7 modification enhanced coupling of a bioactive BMP2-derived peptide on allograft. These results suggest that E7 domains are useful for coupling many types of bone-regenerative molecules to the surface of allograft to reintroduce osteoinductive signals and potentially advance allograft treatments.
doi:10.1016/j.biomaterials.2012.10.046
PMCID: PMC3518561  PMID: 23182349
4.  Comparison of mesenchymal stem cell and osteosarcoma cell adhesion to hydroxyapatite 
Immortalized cells are often used to model the behavior of osteogenic cells on orthopaedic and dental biomaterials. In the current study we compared the adhesive behavior of two osteosarcoma cell lines, MG-63 and Saos-2, with that of mesenchymal stem cells (MSCs) on hydroxyapatite (HA). It was found that osteosarcoma cells demonstrated maximal binding to fibronectin-coated HA, while MSCs alternately preferred HA coated with collagen-I. Interesting, the binding of MG-63 and Saos-2 cells to fibronectin was mediated by both α5 and αv-containing integrin heterodimers, whereas only αv integrins were used by MSCs. Cell spreading was also markedly different for the three cell types. Osteosarcoma cells exhibited optimal spreading on fibronectin, but poor spreading on HA disks coated with fetal bovine serum. In contrast, MSCs spread very well on serum-coated surfaces, but less extensively on fibronectin. Finally, we evaluated integrin expression and found that MSCs have higher levels of α2 integrin subunits relative to MG-63 or Saos-2 cells, which may explain the enhanced adhesion of MSCs on collagen-coated HA. Collectively our results suggest that osteosarcoma cells utilize different mechanisms than MSCs during initial attachment to protein-coated HA, thereby calling into question the suitability of these cell lines as in vitro models for cell/biomaterial interactions.
doi:10.1007/s10856-008-3525-z
PMCID: PMC3677517  PMID: 18626747
hydroxyapatite; integrins; mesenchymal stem cells; bone; matrix
5.  Advantages of RGD peptides for directing cell association with biomaterials 
Biomaterials  2011;32(18):4205-4210.
Despite many years of in vitro research confirming the effectiveness of RGD in promoting cell attachment to a wide variety of biomaterials, animal studies evaluating tissue responses to implanted RGD-functionalized substrates have yielded more variable results The goals of this report are to present some of the reasons why cell culture studies may not always reliably predict in vivo responses, and more importantly, to highlight potential applications that may benefit from the use of RGD peptides.
doi:10.1016/j.biomaterials.2011.02.029
PMCID: PMC3091033  PMID: 21515168
6.  Tumor cell migration and invasion are regulated by expression of variant integrin glycoforms 
Experimental cell research  2008;314(16):2941-2950.
The ST6Gal-I glycosyltransferase, which adds α2-6-linked sialic acids to glycoproteins, is overexpressed in colon adenocarcinoma, and enzyme activity is correlated with tumor cell invasiveness. Previously we reported that forced expression of oncogenic ras in HD3 colonocytes causes upregulation of ST6Gal-I, leading to increased α2-6 sialylation of β1 integrins. To determine whether ras-induced sialylation is involved in promoting the tumor cell phenotype, we used shRNA to downregulate ST6Gal-I in ras-expressors, and then monitored integrin-dependent responses. Here we show that forced ST6Gal-I downregulation, leading to diminished α2-6 sialylation of integrins, inhibits cell adhesion to collagen-I, a β1 ligand. Correspondingly, collagen binding is reduced by enzymatic removal of cell surface sialic acids from ras-expressors with high ST6Gal-I levels (i.e., no shRNA). Cells with forced ST6Gal-I downregulation also exhibit decreased migration on collagen-I and diminished invasion through Matrigel. Importantly, GD25 cells, which lack β1 integrins (and ST6Gal-I), do not demonstrate differential invasiveness when forced to express ST6Gal-I, suggesting that the effects of variant sialylation are mediated specifically by β1 integrins. The observation that cell migration and invasion can be blocked in oncogenic ras-expressing cells by forcing ST6Gal-I downregulation implicates differential sialylation as an important ras effector, and also suggests that ST6Gal-I is a promising therapeutic target.
doi:10.1016/j.yexcr.2008.07.021
PMCID: PMC2570357  PMID: 18703050
Ras; integrin; sialic acid; metastasis; collagen; colonocytes
7.  Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration 
Biomaterials  2011;33(2):524-534.
Bone-mimetic electrospun scaffolds consisting of polycaprolactone (PCL), collagen I and nanoparticulate hydroxyapatite (HA) have previously been shown to support the adhesion, integrin-related signaling and proliferation of mesenchymal stem cells (MSCs), suggesting these matrices serve as promising degradable substrates for osteoregeneration. However, the small pore sizes in electrospun scaffolds hinder cell infiltration in vitro and tissue-ingrowth into the scaffold in vivo, limiting their clinical potential. In this study, three separate techniques were evaluated for their capability to increase the pore size of the PCL/col I/nanoHA scaffolds: limited protease digestion, decreasing the fiber packing density during electro-spinning, and inclusion of sacrificial fibers of the water-soluble polymer PEO. The PEO sacrificial fiber approach was found to be the most effective in increasing scaffold pore size. Furthermore, the use of sacrificial fibers promoted increased MSC infiltration into the scaffolds, as well as greater infiltration of endogenous cells within bone upon placement of scaffolds within calvarial organ cultures. These collective findings support the use of sacrificial PEO fibers as a means to increase the porosity of complex, bone-mimicking electrospun scaffolds, thereby enhancing tissue regenerative processes that depend upon cell infiltration, such as vascularization and replacement of the scaffold with native bone tissue.
doi:10.1016/j.biomaterials.2011.09.080
PMCID: PMC3381740  PMID: 22014462
Bone tissue engineering; Cellular infiltration; Porosity; Scaffold; Biomimetic material; Organ culture
8.  Mesenchymal stem cell interaction with ultra smooth nanostructured diamond for wear resistant orthopaedic implants 
Biomaterials  2008;29(24-25):3461-3468.
Ultra smooth nanostructured diamond (USND) can be applied to greatly increase the wear resistance of orthopaedic implants over conventional designs. Herein we describe surface modification techniques and cytocompatibility studies performed on this new material. We report that hydrogen (H) -terminated USND surfaces supported robust mesenchymal stem cell (MSC) adhesion and survival, while oxygen (O) and fluorine (F) -terminated surfaces resisted cell adhesion, indicating that USND can be modified to either promote or prevent cell/biomaterial interactions. Given the favorable cell response to H-terminated USND, this material was further compared with two commonly-used biocompatible metals, titanium alloy (Ti-6Al-4V) and cobalt chrome (CoCrMo). MSC adhesion and proliferation were significantly improved on USND compared with CoCrMo, although cell adhesion was greatest on Ti-6Al-4V. Comparable amounts of the proadhesive protein, fibronectin, were deposited from serum on the three substrates. Finally, MSCs were induced to undergo osteoblastic differentiation on the three materials, and deposition of a mineralized matrix was quantified. Similar amounts of mineral were deposited onto USND and CoCrMo, whereas mineral deposition was slightly higher on Ti-6Al-4V. When coupled with recently published wear studies, these in vitro results suggest that USND has the potential to reduce debris particle release from orthopaedic implants without compromising osseointegration.
doi:10.1016/j.biomaterials.2008.04.045
PMCID: PMC2504022  PMID: 18490051
Diamond; Mesenchymal stem cell; Biocompatibility; Surface treatment; Protein adsorption; Osseointegration
9.  Mesenchymal stem cell adhesion and spreading on microwave plasma-nitrided titanium alloy 
Improved methods to increase surface hardness of metallic biomedical implants are being developed in an effort to minimize the formation of wear debris particles that cause local pain and inflammation. However, for many implant surface treatments, there is a risk of film delamination due to the mismatch of mechanical properties between the hard surface and the softer underlying metal. In this article, we describe the surface modification of titanium alloy (Ti-6Al-4V), using microwave plasma chemical vapor deposition to induce titanium nitride formation by nitrogen diffusion. The result is a gradual transition from a titanium nitride surface to the bulk titanium alloy, without a sharp interface that could otherwise lead to delamination. We demonstrate that vitronectin adsorption, as well as the adhesion and spreading of human mesenchymal stem cells to plasma-nitrided titanium is equivalent to that of Ti-6Al-4V, while hardness is improved 3- to 4-fold. These in vitro results suggest that the plasma nitriding technique has the potential to reduce wear, and the resulting debris particle release, of biomedical implants without compromising osseointegration; thus, minimizing the possibility of implant loosening over time.
doi:10.1002/jbm.a.30557
PMCID: PMC2430511  PMID: 16265649
titanium nitride; chemical vapor deposition; mesenchymal stem cells; osseointegration; vitronectin
10.  Delivery of Platelet-Derived Growth Factor as a Chemotactic Factor for Mesenchymal Stem Cells by Bone-Mimetic Electrospun Scaffolds 
PLoS ONE  2012;7(7):e40831.
The recruitment of mesenchymal stem cells (MSCs) is a vital step in the bone healing process, and hence the functionalization of osteogenic biomaterials with chemotactic factors constitutes an important effort in the tissue engineering field. Previously we determined that bone-mimetic electrospun scaffolds composed of polycaprolactone, collagen I and nanohydroxyapatite (PCL/col/HA) supported greater MSC adhesion, proliferation and activation of integrin-related signaling cascades than scaffolds composed of PCL or collagen I alone. In the current study we investigated the capacity of bone-mimetic scaffolds to serve as carriers for delivery of an MSC chemotactic factor. In initial studies, we compared MSC chemotaxis toward a variety of molecules including PDGF-AB, PDGF-BB, BMP2, and a mixture of the chemokines SDF-1α, CXCL16, MIP-1α, MIP-1β, and RANTES. Transwell migration assays indicated that, of these factors, PDGF-BB was the most effective in stimulating MSC migration. We next evaluated the capacity of PCL/col/HA scaffolds, compared with PCL scaffolds, to adsorb and release PDGF-BB. We found that significantly more PDGF- BB was adsorbed to, and subsequently released from, PCL/col/HA scaffolds, with sustained release extending over an 8-week interval. The PDGF-BB released was chemotactically active in transwell migration assays, indicating that bioactivity was not diminished by adsorption to the biomaterial. Complementing these studies, we developed a new type of migration assay in which the PDGF-BB-coated bone-mimetic substrates were placed 1.5 cm away from the cell migration front. These experiments confirmed the ability of PDGF-BB-coated PCL/col/HA scaffolds to induce significant MSC chemotaxis under more stringent conditions than standard types of migration assays. Our collective results substantiate the efficacy of PDGF-BB in stimulating MSC recruitment, and further show that the incorporation of native bone molecules, collagen I and nanoHA, into electrospun scaffolds not only enhances MSC adhesion and proliferation, but also increases the amount of PDGF-BB that can be delivered from scaffolds.
doi:10.1371/journal.pone.0040831
PMCID: PMC3395644  PMID: 22808271
11.  Osteogenic differentiation of human mesenchymal stem cells directed by extracellular matrix-mimicking ligands in a biomimetic self-assembled peptide amphiphile nanomatrix 
Biomacromolecules  2009;10(10):2935-2944.
This study investigated the ability of nanoscale, biomimetic peptide amphiphile (PA) scaffolds inscribed with specific cellular adhesive ligands to direct the osteogenic differentiation of human mesenchymal stem cells (hMSCs) without osteogenic supplements. PA sequences were synthesized to mimic the native bone extracellular matrix (ECM), expressing different isolated ligands (i.e. RGDS, DGEA, KRSR). All PAs were presented as self-assembled two-dimensional coatings for the seeded hMSCs. Initial attachment results demonstrated that the different PAs could be individually recognized based on the incorporated adhesive ligands. Long-term studies assessed osteogenic differentiation up to 35 days. The RGDS-containing PA nanomatrix expressed significantly greater alkaline phosphatase (ALP) activity, indicating the early promotion of osteogenic differentiation. A progressive shift towards osteogenic morphology and positive staining for mineral deposition provided further confirmation of the RGDS-containing PA nanomatrix. Overall, the PA nanomatrix clearly has great promise for directing the osteogenic differentiation of hMSCs without the aid of supplements by mimicking the native ECM, providing an adaptable environment that allows for different adhesive ligands to control cellular behaviors. This research model establishes the beginnings of a new versatile approach to regenerate bone tissues by closely following the principles of natural tissue formation.
doi:10.1021/bm9007452
PMCID: PMC2760643  PMID: 19746964
ECM; mesenchymal stem cells; bone tissue engineering; biomimetic material; RGD peptide
12.  ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function 
Background
Ovarian adenocarcinoma is not generally discovered in patients until there has been widespread intraperitoneal dissemination, which is why ovarian cancer is the deadliest gynecologic malignancy. Though incompletely understood, the mechanism of peritoneal metastasis relies on primary tumor cells being able to detach themselves from the tumor, escape normal apoptotic pathways while free floating, and adhere to, and eventually invade through, the peritoneal surface. Our laboratory has previously shown that the Golgi glycosyltransferase, ST6Gal-I, mediates the hypersialylation of β1 integrins in colon adenocarcinoma, which leads to a more metastatic tumor cell phenotype. Interestingly, ST6Gal-I mRNA is known to be upregulated in metastatic ovarian cancer, therefore the goal of the present study was to determine whether ST6Gal-I confers a similarly aggressive phenotype to ovarian tumor cells.
Methods
Three ovarian carcinoma cell lines were screened for ST6Gal-I expression, and two of these, PA-1 and SKOV3, were found to produce ST6Gal-I protein. The third cell line, OV4, lacked endogenous ST6Gal-I. In order to understand the effects of ST6Gal-I on cell behavior, OV4 cells were stably-transduced with ST6Gal-I using a lentiviral vector, and integrin-mediated responses were compared in parental and ST6Gal-I-expressing cells.
Results
Forced expression of ST6Gal-I in OV4 cells, resulting in sialylation of β1 integrins, induced greater cell adhesion to, and migration toward, collagen I. Similarly, ST6Gal-I expressing cells were more invasive through Matrigel.
Conclusion
ST6Gal-I mediated sialylation of β1 integrins in ovarian cancer cells may contribute to peritoneal metastasis by altering tumor cell adhesion and migration through extracellular matrix.
doi:10.1186/1757-2215-1-3
PMCID: PMC2584051  PMID: 19014651

Results 1-12 (12)