PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (32)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Unification of multi-species vertebrate anatomy ontologies for comparative biology in Uberon 
Background
Elucidating disease and developmental dysfunction requires understanding variation in phenotype. Single-species model organism anatomy ontologies (ssAOs) have been established to represent this variation. Multi-species anatomy ontologies (msAOs; vertebrate skeletal, vertebrate homologous, teleost, amphibian AOs) have been developed to represent ‘natural’ phenotypic variation across species. Our aim has been to integrate ssAOs and msAOs for various purposes, including establishing links between phenotypic variation and candidate genes.
Results
Previously, msAOs contained a mixture of unique and overlapping content. This hampered integration and coordination due to the need to maintain cross-references or inter-ontology equivalence axioms to the ssAOs, or to perform large-scale obsolescence and modular import. Here we present the unification of anatomy ontologies into Uberon, a single ontology resource that enables interoperability among disparate data and research groups. As a consequence, independent development of TAO, VSAO, AAO, and vHOG has been discontinued.
Conclusions
The newly broadened Uberon ontology is a unified cross-taxon resource for metazoans (animals) that has been substantially expanded to include a broad diversity of vertebrate anatomical structures, permitting reasoning across anatomical variation in extinct and extant taxa. Uberon is a core resource that supports single- and cross-species queries for candidate genes using annotations for phenotypes from the systematics, biodiversity, medical, and model organism communities, while also providing entities for logical definitions in the Cell and Gene Ontologies.
The ontology release files associated with the ontology merge described in this manuscript are available at: http://purl.obolibrary.org/obo/uberon/releases/2013-02-21/
Current ontology release files are available always available at: http://purl.obolibrary.org/obo/uberon/releases/
doi:10.1186/2041-1480-5-21
PMCID: PMC4089931  PMID: 25009735
Evolutionary biology; Morphological variation; Phenotype; Semantic integration; Bio-ontology
2.  Patterns of Positive Selection in Seven Ant Genomes 
Molecular Biology and Evolution  2014;31(7):1661-1685.
The evolution of ants is marked by remarkable adaptations that allowed the development of very complex social systems. To identify how ant-specific adaptations are associated with patterns of molecular evolution, we searched for signs of positive selection on amino-acid changes in proteins. We identified 24 functional categories of genes which were enriched for positively selected genes in the ant lineage. We also reanalyzed genome-wide data sets in bees and flies with the same methodology to check whether positive selection was specific to ants or also present in other insects. Notably, genes implicated in immunity were enriched for positively selected genes in the three lineages, ruling out the hypothesis that the evolution of hygienic behaviors in social insects caused a major relaxation of selective pressure on immune genes. Our scan also indicated that genes implicated in neurogenesis and olfaction started to undergo increased positive selection before the evolution of sociality in Hymenoptera. Finally, the comparison between these three lineages allowed us to pinpoint molecular evolution patterns that were specific to the ant lineage. In particular, there was ant-specific recurrent positive selection on genes with mitochondrial functions, suggesting that mitochondrial activity was improved during the evolution of this lineage. This might have been an important step toward the evolution of extreme lifespan that is a hallmark of ants.
doi:10.1093/molbev/msu141
PMCID: PMC4069625  PMID: 24782441
comparative genomics; sociality; dN/dS; aging; lifespan; immunity; neurogenesis; olfactory receptors; metabolism; Hymenoptera; bees; Drosophila
4.  IQRray, a new method for Affymetrix microarray quality control, and the homologous organ conservation score, a new benchmark method for quality control metrics 
Bioinformatics  2014;30(10):1392-1399.
Motivation: Microarray results accumulated in public repositories are widely reused in meta-analytical studies and secondary databases. The quality of the data obtained with this technology varies from experiment to experiment, and an efficient method for quality assessment is necessary to ensure their reliability.
Results: The lack of a good benchmark has hampered evaluation of existing methods for quality control. In this study, we propose a new independent quality metric that is based on evolutionary conservation of expression profiles. We show, using 11 large organ-specific datasets, that IQRray, a new quality metrics developed by us, exhibits the highest correlation with this reference metric, among 14 metrics tested. IQRray outperforms other methods in identification of poor quality arrays in datasets composed of arrays from many independent experiments. In contrast, the performance of methods designed for detecting outliers in a single experiment like Normalized Unscaled Standard Error and Relative Log Expression was low because of the inability of these methods to detect datasets containing only low-quality arrays and because the scores cannot be directly compared between experiments.
Availability and implementation: The R implementation of IQRray is available at: ftp://lausanne.isb-sib.ch/pub/databases/Bgee/general/IQRray.R.
Contact: Marta.Rosikiewicz@unil.ch
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btu027
PMCID: PMC4016700  PMID: 24451627
5.  Optimization strategies for fast detection of positive selection on phylogenetic trees 
Bioinformatics  2014;30(8):1129-1137.
Motivation: The detection of positive selection is widely used to study gene and genome evolution, but its application remains limited by the high computational cost of existing implementations. We present a series of computational optimizations for more efficient estimation of the likelihood function on large-scale phylogenetic problems. We illustrate our approach using the branch-site model of codon evolution.
Results: We introduce novel optimization techniques that substantially outperform both CodeML from the PAML package and our previously optimized sequential version SlimCodeML. These techniques can also be applied to other likelihood-based phylogeny software. Our implementation scales well for large numbers of codons and/or species. It can therefore analyse substantially larger datasets than CodeML. We evaluated FastCodeML on different platforms and measured average sequential speedups of FastCodeML (single-threaded) versus CodeML of up to 5.8, average speedups of FastCodeML (multi-threaded) versus CodeML on a single node (shared memory) of up to 36.9 for 12 CPU cores, and average speedups of the distributed FastCodeML versus CodeML of up to 170.9 on eight nodes (96 CPU cores in total).
Availability and implementation: ftp://ftp.vital-it.ch/tools/FastCodeML/.
Contact: selectome@unil.ch or nicolas.salamin@unil.ch
doi:10.1093/bioinformatics/btt760
PMCID: PMC3982156  PMID: 24389654
7.  Selectome update: quality control and computational improvements to a database of positive selection 
Nucleic Acids Research  2013;42(D1):D917-D921.
Selectome (http://selectome.unil.ch/) is a database of positive selection, based on a branch-site likelihood test. This model estimates the number of nonsynonymous substitutions (dN) and synonymous substitutions (dS) to evaluate the variation in selective pressure (dN/dS ratio) over branches and over sites. Since the original release of Selectome, we have benchmarked and implemented a thorough quality control procedure on multiple sequence alignments, aiming to provide minimum false-positive results. We have also improved the computational efficiency of the branch-site test implementation, allowing larger data sets and more frequent updates. Release 6 of Selectome includes all gene trees from Ensembl for Primates and Glires, as well as a large set of vertebrate gene trees. A total of 6810 gene trees have some evidence of positive selection. Finally, the web interface has been improved to be more responsive and to facilitate searches and browsing.
doi:10.1093/nar/gkt1065
PMCID: PMC3964977  PMID: 24225318
8.  Community-wide plasmid gene mobilization and selection 
The ISME Journal  2013;7(6):1173-1186.
Plasmids have long been recognized as an important driver of DNA exchange and genetic innovation in prokaryotes. The success of plasmids has been attributed to their independent replication from the host's chromosome and their frequent self-transfer. It is thought that plasmids accumulate, rearrange and distribute nonessential genes, which may provide an advantage for host proliferation under selective conditions. In order to test this hypothesis independently of biases from culture selection, we study the plasmid metagenome from microbial communities in two activated sludge systems, one of which receives mostly household and the other chemical industry wastewater. We find that plasmids from activated sludge microbial communities carry among the largest proportion of unknown gene pools so far detected in metagenomic DNA, confirming their presumed role of DNA innovators. At a system level both plasmid metagenomes were dominated by functions associated with replication and transposition, and contained a wide variety of antibiotic and heavy metal resistances. Plasmid families were very different in the two metagenomes and grouped in deep-branching new families compared with known plasmid replicons. A number of abundant plasmid replicons could be completely assembled directly from the metagenome, providing insight in plasmid composition without culturing bias. Functionally, the two metagenomes strongly differed in several ways, including a greater abundance of genes for carbohydrate metabolism in the industrial and of general defense factors in the household activated sludge plasmid metagenome. This suggests that plasmids not only contribute to the adaptation of single individual prokaryotic species, but of the prokaryotic community as a whole under local selective conditions.
doi:10.1038/ismej.2013.13
PMCID: PMC3660673  PMID: 23407308
metagenomic studies; mobilome
9.  The Hourglass and the Early Conservation Models—Co-Existing Patterns of Developmental Constraints in Vertebrates 
PLoS Genetics  2013;9(4):e1003476.
Developmental constraints have been postulated to limit the space of feasible phenotypes and thus shape animal evolution. These constraints have been suggested to be the strongest during either early or mid-embryogenesis, which corresponds to the early conservation model or the hourglass model, respectively. Conflicting results have been reported, but in recent studies of animal transcriptomes the hourglass model has been favored. Studies usually report descriptive statistics calculated for all genes over all developmental time points. This introduces dependencies between the sets of compared genes and may lead to biased results. Here we overcome this problem using an alternative modular analysis. We used the Iterative Signature Algorithm to identify distinct modules of genes co-expressed specifically in consecutive stages of zebrafish development. We then performed a detailed comparison of several gene properties between modules, allowing for a less biased and more powerful analysis. Notably, our analysis corroborated the hourglass pattern at the regulatory level, with sequences of regulatory regions being most conserved for genes expressed in mid-development but not at the level of gene sequence, age, or expression, in contrast to some previous studies. The early conservation model was supported with gene duplication and birth that were the most rare for genes expressed in early development. Finally, for all gene properties, we observed the least conservation for genes expressed in late development or adult, consistent with both models. Overall, with the modular approach, we showed that different levels of molecular evolution follow different patterns of developmental constraints. Thus both models are valid, but with respect to different genomic features.
Author Summary
During development, vertebrate embryos pass through a “phylotypic” stage, during which their morphology is most similar between different species. This gave rise to the hourglass model, which predicts the highest developmental constraints during mid-embryogenesis. In the last decade, a large effort has been made to uncover the relation between developmental constraints and the evolution of genome. Several studies reported gene characteristics that change according to the hourglass model, e.g. sequence conservation, age, or expression. Here, we first show that some of the previous conclusions do not hold out under detailed analysis of the data. Then, we discuss the disadvantages of the standard evo-devo approach, i.e. comparing descriptive statistics of all genes across development. Results of such analysis are biased by genes expressed constantly during development (housekeeping genes). To overcome this limitation, we use a modularization approach, which reduces the complexity of the data and assures independency between the sets of genes which are compared. We identified distinct sets of genes (modules) with time-specific expression in zebrafish development and analyzed their conservation of sequence, gene expression, and regulatory elements, as well as their age and orthology relationships. Interestingly, we found different patterns of developmental constraints for different gene properties. Only conserved regulatory regions follow an hourglass pattern.
doi:10.1371/journal.pgen.1003476
PMCID: PMC3636041  PMID: 23637639
10.  The Branch-Site Test of Positive Selection Is Surprisingly Robust but Lacks Power under Synonymous Substitution Saturation and Variation in GC 
Molecular Biology and Evolution  2013;30(7):1675-1686.
Positive selection is widely estimated from protein coding sequence alignments by the nonsynonymous-to-synonymous ratio ω. Increasingly elaborate codon models are used in a likelihood framework for this estimation. Although there is widespread concern about the robustness of the estimation of the ω ratio, more efforts are needed to estimate this robustness, especially in the context of complex models. Here, we focused on the branch-site codon model. We investigated its robustness on a large set of simulated data. First, we investigated the impact of sequence divergence. We found evidence of underestimation of the synonymous substitution rate for values as small as 0.5, with a slight increase in false positives for the branch-site test. When dS increases further, underestimation of dS is worse, but false positives decrease. Interestingly, the detection of true positives follows a similar distribution, with a maximum for intermediary values of dS. Thus, high dS is more of a concern for a loss of power (false negatives) than for false positives of the test. Second, we investigated the impact of GC content. We showed that there is no significant difference of false positives between high GC (up to ∼80%) and low GC (∼30%) genes. Moreover, neither shifts of GC content on a specific branch nor major shifts in GC along the gene sequence generate many false positives. Our results confirm that the branch-site is a very conservative test.
doi:10.1093/molbev/mst062
PMCID: PMC3684852  PMID: 23558341
adaptive evolution; codon model; base composition
11.  Uncovering hidden duplicated content in public transcriptomics data 
As part of the development of the database Bgee (a dataBase for Gene Expression Evolution), we annotate and analyse expression data from different types and different sources, notably Affymetrix data from GEO and ArrayExpress, and RNA-Seq data from SRA. During our quality control procedure, we have identified duplicated content in GEO and ArrayExpress, affecting ∼14% of our data: fully or partially duplicated experiments from independent data submissions, Affymetrix chips reused in several experiments, or reused within an experiment. We present here the procedure that we have established to filter such duplicates from Affymetrix data, and our procedure to identify future potential duplicates in RNA-Seq data.
Database URL: http://bgee.unil.ch/
doi:10.1093/database/bat010
PMCID: PMC3595988  PMID: 23487185
12.  Recent advances in biocuration: Meeting Report from the fifth International Biocuration Conference 
The 5th International Biocuration Conference brought together over 300 scientists to exchange on their work, as well as discuss issues relevant to the International Society for Biocuration’s (ISB) mission. Recurring themes this year included the creation and promotion of gold standards, the need for more ontologies, and more formal interactions with journals. The conference is an essential part of the ISB's goal to support exchanges among members of the biocuration community. Next year's conference will be held in Cambridge, UK, from 7 to 10 April 2013. In the meanwhile, the ISB website provides information about the society's activities (http://biocurator.org), as well as related events of interest.
doi:10.1093/database/bas036
PMCID: PMC3483532  PMID: 23110974
13.  Resolving the Ortholog Conjecture: Orthologs Tend to Be Weakly, but Significantly, More Similar in Function than Paralogs 
PLoS Computational Biology  2012;8(5):e1002514.
The function of most proteins is not determined experimentally, but is extrapolated from homologs. According to the “ortholog conjecture”, or standard model of phylogenomics, protein function changes rapidly after duplication, leading to paralogs with different functions, while orthologs retain the ancestral function. We report here that a comparison of experimentally supported functional annotations among homologs from 13 genomes mostly supports this model. We show that to analyze GO annotation effectively, several confounding factors need to be controlled: authorship bias, variation of GO term frequency among species, variation of background similarity among species pairs, and propagated annotation bias. After controlling for these biases, we observe that orthologs have generally more similar functional annotations than paralogs. This is especially strong for sub-cellular localization. We observe only a weak decrease in functional similarity with increasing sequence divergence. These findings hold over a large diversity of species; notably orthologs from model organisms such as E. coli, yeast or mouse have conserved function with human proteins.
Author Summary
To infer the function of an unknown gene, possibly the most effective way is to identify a well-characterized evolutionarily related gene, and assume that they have both kept their ancestral function. If several such homologs are available, all else being equal, it has long been assumed that those that diverged by speciation (“ortholog”) are functionally closer than those that diverged by duplication (“paralogs”); thus function is more reliably inferred from the former. But despite its prevalence, this model mostly rests on first principles, as for the longest time we have not had sufficient data to test it empirically. Recently, some studies began investigating this question and have cast doubt on the validity of this model. Here, we show that by considering a wide range of organisms and data, and, crucially, by correcting for several easily overlooked biases affecting functional annotations, the standard model is corroborated by the presently available experimental data.
doi:10.1371/journal.pcbi.1002514
PMCID: PMC3355068  PMID: 22615551
14.  Correcting for the bias due to expression specificity improves the estimation of constrained evolution of expression between mouse and human 
Bioinformatics  2012;28(14):1865-1872.
Motivation: Comparative analyses of gene expression data from different species have become an important component of the study of molecular evolution. Thus methods are needed to estimate evolutionary distances between expression profiles, as well as a neutral reference to estimate selective pressure. Divergence between expression profiles of homologous genes is often calculated with Pearson's or Euclidean distance. Neutral divergence is usually inferred from randomized data. Despite being widely used, neither of these two steps has been well studied. Here, we analyze these methods formally and on real data, highlight their limitations and propose improvements.
Results: It has been demonstrated that Pearson's distance, in contrast to Euclidean distance, leads to underestimation of the expression similarity between homologous genes with a conserved uniform pattern of expression. Here, we first extend this study to genes with conserved, but specific pattern of expression. Surprisingly, we find that both Pearson's and Euclidean distances used as a measure of expression similarity between genes depend on the expression specificity of those genes. We also show that the Euclidean distance depends strongly on data normalization. Next, we show that the randomization procedure that is widely used to estimate the rate of neutral evolution is biased when broadly expressed genes are abundant in the data. To overcome this problem, we propose a novel randomization procedure that is unbiased with respect to expression profiles present in the datasets. Applying our method to the mouse and human gene expression data suggests significant gene expression conservation between these species.
Contact: marc.robinson-rechavi@unil.ch; sven.bergmann@unil.ch
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/bts266
PMCID: PMC3389764  PMID: 22576178
15.  Comparative modular analysis of gene expression in vertebrate organs 
BMC Genomics  2012;13:124.
Background
The degree of conservation of gene expression between homologous organs largely remains an open question. Several recent studies reported some evidence in favor of such conservation. Most studies compute organs' similarity across all orthologous genes, whereas the expression level of many genes are not informative about organ specificity.
Results
Here, we use a modularization algorithm to overcome this limitation through the identification of inter-species co-modules of organs and genes. We identify such co-modules using mouse and human microarray expression data. They are functionally coherent both in terms of genes and of organs from both organisms. We show that a large proportion of genes belonging to the same co-module are orthologous between mouse and human. Moreover, their zebrafish orthologs also tend to be expressed in the corresponding homologous organs. Notable exceptions to the general pattern of conservation are the testis and the olfactory bulb. Interestingly, some co-modules consist of single organs, while others combine several functionally related organs. For instance, amygdala, cerebral cortex, hypothalamus and spinal cord form a clearly discernible unit of expression, both in mouse and human.
Conclusions
Our study provides a new framework for comparative analysis which will be applicable also to other sets of large-scale phenotypic data collected across different species.
doi:10.1186/1471-2164-13-124
PMCID: PMC3359279  PMID: 22458817
16.  Comparative analysis of human and mouse expression data illuminates tissue-specific evolutionary patterns of miRNAs 
Nucleic Acids Research  2012;40(13):5890-5900.
MicroRNAs (miRNAs) constitute an important class of gene regulators. While models have been proposed to explain their appearance and expansion, the validation of these models has been difficult due to the lack of comparative studies. Here, we analyze miRNA evolutionary patterns in two mammals, human and mouse, in relation to the age of miRNA families. In this comparative framework, we confirm some predictions of previously advanced models of miRNA evolution, e.g. that miRNAs arise more frequently de novo than by duplication, or that the number of protein-coding gene targeted by miRNAs decreases with evolutionary time. We also corroborate that miRNAs display an increase in expression level with evolutionary time, however we show that this relation is largely tissue-dependent, and especially low in embryonic or nervous tissues. We identify a bias of tag-sequencing techniques regarding the assessment of breadth of expression, leading us, contrary to predictions, to find more tissue-specific expression of older miRNAs. Together, our results refine the models used so far to depict the evolution of miRNA genes. They underline the role of tissue-specific selective forces on the evolution of miRNAs, as well as the potential co-evolution patterns between miRNAs and the protein-coding genes they target.
doi:10.1093/nar/gks279
PMCID: PMC3401464  PMID: 22457063
17.  How much does the amphioxus genome represent the ancestor of chordates? 
One of the main motivations to study amphioxus is its potential for understanding the last common ancestor of chordates, which notably gave rise to the vertebrates. An important feature in this respect is the slow evolutionary rate that seems to have characterized the cephalochordate lineage, making amphioxus an interesting proxy for the chordate ancestor, as well as a key lineage to include in comparative studies. Whereas slow evolution was first noticed at the phenotypic level, it has also been described at the genomic level. Here, we examine whether the amphioxus genome is indeed a good proxy for the genome of the chordate ancestor, with a focus on protein-coding genes. We investigate genome features, such as synteny, gene duplication and gene loss, and contrast the amphioxus genome with those of other deuterostomes that are used in comparative studies, such as Ciona, Oikopleura and urchin.
doi:10.1093/bfgp/els003
PMCID: PMC3310212  PMID: 22373648
deuterostomes; evolutionary rates; gene duplication; gene loss; orthology; synteny
18.  vHOG, a multispecies vertebrate ontology of homologous organs groups 
Bioinformatics  2012;28(7):1017-1020.
Motivation: Most anatomical ontologies are species-specific, whereas a framework for comparative studies is needed. We describe the vertebrate Homologous Organs Groups ontology, vHOG, used to compare expression patterns between species.
Results: vHOG is a multispecies anatomical ontology for the vertebrate lineage. It is based on the HOGs used in the Bgee database of gene expression evolution. vHOG version 1.4 includes 1184 terms, follows OBO principles and is based on the Common Anatomy Reference Ontology (CARO). vHOG only describes structures with historical homology relations between model vertebrate species. The mapping to species-specific anatomical ontologies is provided as a separate file, so that no homology hypothesis is stated within the ontology itself. Each mapping has been manually reviewed, and we provide support codes and references when available.
Availability and implementation: vHOG is available from the Bgee download site (http://bgee.unil.ch/), as well as from the OBO Foundry and the NCBO Bioportal websites.
Contact: bgee@isb-sib.ch; frederic.bastian@unil.ch
doi:10.1093/bioinformatics/bts048
PMCID: PMC3315709  PMID: 22285560
19.  Meta-analysis of estrogen response in MCF-7 distinguishes early target genes involved in signaling and cell proliferation from later target genes involved in cell cycle and DNA repair 
BMC Systems Biology  2011;5:138.
Background
Many studies have been published outlining the global effects of 17β-estradiol (E2) on gene expression in human epithelial breast cancer derived MCF-7 cells. These studies show large variation in results, reporting between ~100 and ~1500 genes regulated by E2, with poor overlap.
Results
We performed a meta-analysis of these expression studies, using the Rank product method to obtain a more accurate and stable list of the differentially expressed genes, and of pathways regulated by E2. We analyzed 9 time-series data sets, concentrating on response at 3-4 hrs (early) and at 24 hrs (late). We found >1000 statistically significant probe sets after correction for multiple testing at 3-4 hrs, and >2000 significant probe sets at 24 hrs. Differentially expressed genes were examined by pathway analysis. This revealed 15 early response pathways, mostly related to cell signaling and proliferation, and 20 late response pathways, mostly related to breast cancer, cell division, DNA repair and recombination.
Conclusions
Our results confirm that meta-analysis identified more differentially expressed genes than the individual studies, and that these genes act together in networks. These results provide new insight into E2 regulated mechanisms, especially in the context of breast cancer.
doi:10.1186/1752-0509-5-138
PMCID: PMC3225231  PMID: 21878096
microarray; meta-analysis; estrogen; breast cancer; pathways
20.  Conceptual framework and pilot study to benchmark phylogenomic databases based on reference gene trees 
Briefings in Bioinformatics  2011;12(5):423-435.
Phylogenomic databases provide orthology predictions for species with fully sequenced genomes. Although the goal seems well-defined, the content of these databases differs greatly. Seven ortholog databases (Ensembl Compara, eggNOG, HOGENOM, InParanoid, OMA, OrthoDB, Panther) were compared on the basis of reference trees. For three well-conserved protein families, we observed a generally high specificity of orthology assignments for these databases. We show that differences in the completeness of predicted gene relationships and in the phylogenetic information are, for the great majority, not due to the methods used, but to differences in the underlying database concepts. According to our metrics, none of the databases provides a fully correct and comprehensive protein classification. Our results provide a framework for meaningful and systematic comparisons of phylogenomic databases. In the future, a sustainable set of ‘Gold standard’ phylogenetic trees could provide a robust method for phylogenomic databases to assess their current quality status, measure changes following new database releases and diagnose improvements subsequent to an upgrade of the analysis procedure.
doi:10.1093/bib/bbr034
PMCID: PMC3178055  PMID: 21737420
conceptual comparison; phylogenomic databases; quality assessment; reference gene trees
21.  When orthologs diverge between human and mouse 
Briefings in Bioinformatics  2011;12(5):436-441.
Despite the common assumption that orthologs usually share the same function, there have been various reports of divergence between orthologs, even among species as close as mammals. The comparison of mouse and human is of special interest, because mouse is often used as a model organism to understand human biology. We review the literature on evidence for divergence between human and mouse orthologous genes, and discuss it in the context of biomedical research.
doi:10.1093/bib/bbr031
PMCID: PMC3178054  PMID: 21677033
orthology; expression divergence; alternative splicing; copy number variants; phenotypic divergence
22.  Large-Scale Analysis of Orthologs and Paralogs under Covarion-Like and Constant-but-Different Models of Amino Acid Evolution 
Molecular Biology and Evolution  2010;27(11):2618-2627.
Functional divergence between homologous proteins is expected to affect amino acid sequences in two main ways, which can be considered as proxies of biochemical divergence: a “covarion-like” pattern of correlated changes in evolutionary rates, and switches in conserved residues (“conserved but different”). Although these patterns have been used in case studies, a large-scale analysis is needed to estimate their frequency and distribution. We use a phylogenomic framework of animal genes to answer three questions: 1) What is the prevalence of such patterns? 2) Can we link such patterns at the amino acid level with selection inferred at the codon level? 3) Are patterns different between paralogs and orthologs? We find that covarion-like patterns are more frequently detected than “constant but different,” but that only the latter are correlated with signal for positive selection. Finally, there is no obvious difference in patterns between orthologs and paralogs.
doi:10.1093/molbev/msq149
PMCID: PMC2955734  PMID: 20551039
covarion; positive selection; whole-genome duplication; vertebrate evolution; rate shift; heterotachy
23.  Homolonto: generating homology relationships by pairwise alignment of ontologies and application to vertebrate anatomy 
Bioinformatics  2010;26(14):1766-1771.
Motivation: The anatomy of model species is described in ontologies, which are used to standardize the annotations of experimental data, such as gene expression patterns. To compare such data between species, we need to establish relations between ontologies describing different species.
Results: We present a new algorithm, and its implementation in the software Homolonto, to create new relationships between anatomical ontologies, based on the homology concept. Homolonto uses a supervised ontology alignment approach. Several alignments can be merged, forming homology groups. We also present an algorithm to generate relationships between these homology groups. This has been used to build a multi-species ontology, for the database of gene expression evolution Bgee.
Availability: download section of the Bgee website http://bgee.unil.ch/
Contact: marc.robinson-rechavi@unil.ch
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btq283
PMCID: PMC2894521  PMID: 20519284
24.  Molecular Evidence for a Functional Ecdysone Signaling System in Brugia malayi 
Background
Filarial nematodes, including Brugia malayi, the causative agent of lymphatic filariasis, undergo molting in both arthropod and mammalian hosts to complete their life cycles. An understanding of how these parasites cross developmental checkpoints may reveal potential targets for intervention. Pharmacological evidence suggests that ecdysteroids play a role in parasitic nematode molting and fertility although their specific function remains unknown. In insects, ecdysone triggers molting through the activation of the ecdysone receptor: a heterodimer of EcR (ecdysone receptor) and USP (Ultraspiracle).
Methods and Findings
We report the cloning and characterization of a B. malayi EcR homologue (Bma-EcR). Bma-EcR dimerizes with insect and nematode USP/RXRs and binds to DNA encoding a canonical ecdysone response element (EcRE). In support of the existence of an active ecdysone receptor in Brugia we also cloned a Brugia rxr (retinoid X receptor) homolog (Bma-RXR) and demonstrate that Bma-EcR and Bma-RXR interact to form an active heterodimer using a mammalian two-hybrid activation assay. The Bma-EcR ligand-binding domain (LBD) exhibits ligand-dependent transactivation via a GAL4 fusion protein combined with a chimeric RXR in mammalian cells treated with Ponasterone-A or a synthetic ecdysone agonist. Furthermore, we demonstrate specific up-regulation of reporter gene activity in transgenic B. malayi embryos transfected with a luciferase construct controlled by an EcRE engineered in a B. malayi promoter, in the presence of 20-hydroxy-ecdysone.
Conclusions
Our study identifies and characterizes the two components (Bma-EcR and Bma-RXR) necessary for constituting a functional ecdysteroid receptor in B. malayi. Importantly, the ligand binding domain of BmaEcR is shown to be capable of responding to ecdysteroid ligands, and conversely, ecdysteroids can activate transcription of genes downstream of an EcRE in live B. malayi embryos. These results together confirm that an ecdysone signaling system operates in B. malayi and strongly suggest that Bma-EcR plays a central role in it. Furthermore, our study proposes that existing compounds targeting the insect ecdysone signaling pathway should be considered as potential pharmacological agents against filarial parasites.
Author Summary
Filarial parasites such as Brugia malayi and Onchocerca volvulus are the causative agents of the tropical diseases lymphatic filariasis and onchocerciasis, which infect 150 million people, mainly in Africa and Southeast Asia. Filarial nematodes have a complex life cycle that involves transmission and development within both mammalian and insect hosts. The successful completion of the life cycle includes four molts, two of which are triggered upon transmission from one host to the other, human and mosquito, respectively. Elucidation of the molecular mechanisms involved in the molting processes in filarial nematodes may yield a new set of targets for drug intervention. In insects and other arthropods molting transitions are regulated by the steroid hormone ecdysone that interacts with a specialized hormone receptor composed of two different proteins belonging to the family of nuclear receptors. We have cloned from B. malayi two members of the nuclear receptor family that show many sequence and biochemical properties consistent with the ecdysone receptor of insects. This finding represents the first report of a functional ecdysone receptor homolog in nematodes. We have also established a transgenic hormone induction assay in B. malayi that can be used to discover ecdysone responsive genes and potentially lead to screening assays for active compounds for pharmaceutical development.
doi:10.1371/journal.pntd.0000625
PMCID: PMC2834746  PMID: 20231890
25.  The expansion of amino-acid repeats is not associated to adaptive evolution in mammalian genes 
BMC Genomics  2009;10:619.
Background
The expansion of amino acid repeats is determined by a high mutation rate and can be increased or limited by selection. It has been suggested that recent expansions could be associated with the potential of adaptation to new environments. In this work, we quantify the strength of this association, as well as the contribution of potential confounding factors.
Results
Mammalian positively selected genes have accumulated more recent amino acid repeats than other mammalian genes. However, we found little support for an accelerated evolutionary rate as the main driver for the expansion of amino acid repeats. The most significant predictors of amino acid repeats are gene function and GC content. There is no correlation with expression level.
Conclusions
Our analyses show that amino acid repeat expansions are causally independent from protein adaptive evolution in mammalian genomes. Relaxed purifying selection or positive selection do not associate with more or more recent amino acid repeats. Their occurrence is slightly favoured by the sequence context but mainly determined by the molecular function of the gene.
doi:10.1186/1471-2164-10-619
PMCID: PMC2806350  PMID: 20021652

Results 1-25 (32)