Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Expert curation in UniProtKB: a case study on dealing with conflicting and erroneous data 
UniProtKB/Swiss-Prot provides expert curation with information extracted from literature and curator-evaluated computational analysis. As knowledgebases continue to play an increasingly important role in scientific research, a number of studies have evaluated their accuracy and revealed various errors. While some are curation errors, others are the result of incorrect information published in the scientific literature. By taking the example of sirtuin-5, a complex annotation case, we will describe the curation procedure of UniProtKB/Swiss-Prot and detail how we report conflicting information in the database. We will demonstrate the importance of collaboration between resources to ensure curation consistency and the value of contributions from the user community in helping maintain error-free resources.
Database URL:
PMCID: PMC3950660  PMID: 24622611
2.  The UniProt-GO Annotation database in 2011 
Nucleic Acids Research  2011;40(D1):D565-D570.
The GO annotation dataset provided by the UniProt Consortium (GOA: is a comprehensive set of evidenced-based associations between terms from the Gene Ontology resource and UniProtKB proteins. Currently supplying over 100 million annotations to 11 million proteins in more than 360 000 taxa, this resource has increased 2-fold over the last 2 years and has benefited from a wealth of checks to improve annotation correctness and consistency as well as now supplying a greater information content enabled by GO Consortium annotation format developments. Detailed, manual GO annotations obtained from the curation of peer-reviewed papers are directly contributed by all UniProt curators and supplemented with manual and electronic annotations from 36 model organism and domain-focused scientific resources. The inclusion of high-quality, automatic annotation predictions ensures the UniProt GO annotation dataset supplies functional information to a wide range of proteins, including those from poorly characterized, non-model organism species. UniProt GO annotations are freely available in a range of formats accessible by both file downloads and web-based views. In addition, the introduction of a new, normalized file format in 2010 has made for easier handling of the complete UniProt-GOA data set.
PMCID: PMC3245010  PMID: 22123736
3.  UniProt Knowledgebase: a hub of integrated protein data 
The UniProt Knowledgebase (UniProtKB) acts as a central hub of protein knowledge by providing a unified view of protein sequence and functional information. Manual and automatic annotation procedures are used to add data directly to the database while extensive cross-referencing to more than 120 external databases provides access to additional relevant information in more specialized data collections. UniProtKB also integrates a range of data from other resources. All information is attributed to its original source, allowing users to trace the provenance of all data. The UniProt Consortium is committed to using and promoting common data exchange formats and technologies, and UniProtKB data is made freely available in a range of formats to facilitate integration with other databases.
Database URL:
PMCID: PMC3070428  PMID: 21447597
4.  The Protein Feature Ontology: A Tool for the Unification of Protein Annotations 
Bioinformatics (Oxford, England)  2008;24(23):2767-2772.
The advent of sequencing and structural genomics projects has provided a dramatic boost in the number of protein structures and sequences. Due to the high-throughput nature of these projects, many of the molecules are uncharacterised and their functions unknown. This, in turn, has led to the need for a greater number and diversity of tools and databases providing annotation through transfer based on homology and prediction methods. Though many such tools to annotate protein sequence and structure exist, they are spread throughout the world, often with dedicated individual web pages. This situation does not provide a consensus view of the data and hinders comparison between methods. Integration of these methods is needed. So far this has not been possible since there was no common vocabulary available that could be used as a standard language. A variety of terms could be used to describe any particular feature ranging from different spellings to completely different terms. The Protein Feature Ontology ( is a structured controlled vocabulary for features of a protein sequence or structure. It provides a common language for tools and methods to use, so that integration and comparison of their annotations is possible. The Protein Feature Ontology comprises approximately 100 positional terms (located in a particular region of the sequence), which have been integrated into the Sequence Ontology (SO). 40 non-positional terms which describe general protein properties have also been defined and, in addition, post-translational modifications are described by using an already existing ontology, the Protein Modification Ontology (MOD). The Protein Feature Ontology has been used by the BioSapiens Network of Excellence, a consortium comprising 19 partner sites in 14 European countries generating over 150 distinct annotation types for protein sequences and structures.
PMCID: PMC2912506  PMID: 18936051
5.  The Universal Protein Resource (UniProt): an expanding universe of protein information 
Nucleic Acids Research  2005;34(Database issue):D187-D191.
The Universal Protein Resource (UniProt) provides a central resource on protein sequences and functional annotation with three database components, each addressing a key need in protein bioinformatics. The UniProt Knowledgebase (UniProtKB), comprising the manually annotated UniProtKB/Swiss-Prot section and the automatically annotated UniProtKB/TrEMBL section, is the preeminent storehouse of protein annotation. The extensive cross-references, functional and feature annotations and literature-based evidence attribution enable scientists to analyse proteins and query across databases. The UniProt Reference Clusters (UniRef) speed similarity searches via sequence space compression by merging sequences that are 100% (UniRef100), 90% (UniRef90) or 50% (UniRef50) identical. Finally, the UniProt Archive (UniParc) stores all publicly available protein sequences, containing the history of sequence data with links to the source databases. UniProt databases continue to grow in size and in availability of information. Recent and upcoming changes to database contents, formats, controlled vocabularies and services are described. New download availability includes all major releases of UniProtKB, sequence collections by taxonomic division and complete proteomes. A bibliography mapping service has been added, and an ID mapping service will be available soon. UniProt databases can be accessed online at or downloaded at .
PMCID: PMC1347523  PMID: 16381842
6.  An evaluation of GO annotation retrieval for BioCreAtIvE and GOA 
BMC Bioinformatics  2005;6(Suppl 1):S17.
The Gene Ontology Annotation (GOA) database aims to provide high-quality supplementary GO annotation to proteins in the UniProt Knowledgebase. Like many other biological databases, GOA gathers much of its content from the careful manual curation of literature. However, as both the volume of literature and of proteins requiring characterization increases, the manual processing capability can become overloaded.
Consequently, semi-automated aids are often employed to expedite the curation process. Traditionally, electronic techniques in GOA depend largely on exploiting the knowledge in existing resources such as InterPro. However, in recent years, text mining has been hailed as a potentially useful tool to aid the curation process.
To encourage the development of such tools, the GOA team at EBI agreed to take part in the functional annotation task of the BioCreAtIvE (Critical Assessment of Information Extraction systems in Biology) challenge.
BioCreAtIvE task 2 was an experiment to test if automatically derived classification using information retrieval and extraction could assist expert biologists in the annotation of the GO vocabulary to the proteins in the UniProt Knowledgebase.
GOA provided the training corpus of over 9000 manual GO annotations extracted from the literature. For the test set, we provided a corpus of 200 new Journal of Biological Chemistry articles used to annotate 286 human proteins with GO terms. A team of experts manually evaluated the results of 9 participating groups, each of which provided highlighted sentences to support their GO and protein annotation predictions. Here, we give a biological perspective on the evaluation, explain how we annotate GO using literature and offer some suggestions to improve the precision of future text-retrieval and extraction techniques. Finally, we provide the results of the first inter-annotator agreement study for manual GO curation, as well as an assessment of our current electronic GO annotation strategies.
The GOA database currently extracts GO annotation from the literature with 91 to 100% precision, and at least 72% recall. This creates a particularly high threshold for text mining systems which in BioCreAtIvE task 2 (GO annotation extraction and retrieval) initial results precisely predicted GO terms only 10 to 20% of the time.
Improvements in the performance and accuracy of text mining for GO terms should be expected in the next BioCreAtIvE challenge. In the meantime the manual and electronic GO annotation strategies already employed by GOA will provide high quality annotations.
PMCID: PMC1869009  PMID: 15960829
7.  UniProt: the Universal Protein knowledgebase 
Nucleic Acids Research  2004;32(Database issue):D115-D119.
To provide the scientific community with a single, centralized, authoritative resource for protein sequences and functional information, the Swiss-Prot, TrEMBL and PIR protein database activities have united to form the Universal Protein Knowledgebase (UniProt) consortium. Our mission is to provide a comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase, with extensive cross-references and query interfaces. The central database will have two sections, corresponding to the familiar Swiss-Prot (fully manually curated entries) and TrEMBL (enriched with automated classification, annotation and extensive cross-references). For convenient sequence searches, UniProt also provides several non-redundant sequence databases. The UniProt NREF (UniRef) databases provide representative subsets of the knowledgebase suitable for efficient searching. The comprehensive UniProt Archive (UniParc) is updated daily from many public source databases. The UniProt databases can be accessed online ( or downloaded in several formats ( The scientific community is encouraged to submit data for inclusion in UniProt.
PMCID: PMC308865  PMID: 14681372
8.  The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology 
Nucleic Acids Research  2004;32(Database issue):D262-D266.
The Gene Ontology Annotation (GOA) database ( aims to provide high-quality electronic and manual annotations to the UniProt Knowledgebase (Swiss-Prot, TrEMBL and PIR-PSD) using the standardized vocabulary of the Gene Ontology (GO). As a supplementary archive of GO annotation, GOA promotes a high level of integration of the knowledge represented in UniProt with other databases. This is achieved by converting UniProt annotation into a recognized computational format. GOA provides annotated entries for nearly 60 000 species (GOA-SPTr) and is the largest and most comprehensive open-source contributor of annotations to the GO Consortium annotation effort. By integrating GO annotations from other model organism groups, GOA consolidates specialized knowledge and expertise to ensure the data remain a key reference for up-to-date biological information. Furthermore, the GOA database fully endorses the Human Proteomics Initiative by prioritizing the annotation of proteins likely to benefit human health and disease. In addition to a non-redundant set of annotations to the human proteome (GOA-Human) and monthly releases of its GO annotation for all species (GOA-SPTr), a series of GO mapping files and specific cross-references in other databases are also regularly distributed. GOA can be queried through a simple user-friendly web interface or downloaded in a parsable format via the EBI and GO FTP websites. The GOA data set can be used to enhance the annotation of particular model organism or gene expression data sets, although increasingly it has been used to evaluate GO predictions generated from text mining or protein interaction experiments. In 2004, the GOA team will build on its success and will continue to supplement the functional annotation of UniProt and work towards enhancing the ability of scientists to access all available biological information. Researchers wishing to query or contribute to the GOA project are encouraged to email:
PMCID: PMC308756  PMID: 14681408
10.  The European Bioinformatics Institute's data resources 
Nucleic Acids Research  2003;31(1):43-50.
As the amount of biological data grows, so does the need for biologists to store and access this information in central repositories in a free and unambiguous manner. The European Bioinformatics Institute (EBI) hosts six core databases, which store information on DNA sequences (EMBL-Bank), protein sequences (SWISS-PROT and TrEMBL), protein structure (MSD), whole genomes (Ensembl) and gene expression (ArrayExpress). But just as a cell would be useless if it couldn't transcribe DNA or translate RNA, our resources would be compromised if each existed in isolation. We have therefore developed a range of tools that not only facilitate the deposition and retrieval of biological information, but also allow users to carry out searches that reflect the interconnectedness of biological information. The EBI's databases and tools are all available on our website at
PMCID: PMC165513  PMID: 12519944

Results 1-10 (10)