PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
2.  InterPro in 2011: new developments in the family and domain prediction database 
Nucleic Acids Research  2011;40(Database issue):D306-D312.
InterPro (http://www.ebi.ac.uk/interpro/) is a database that integrates diverse information about protein families, domains and functional sites, and makes it freely available to the public via Web-based interfaces and services. Central to the database are diagnostic models, known as signatures, against which protein sequences can be searched to determine their potential function. InterPro has utility in the large-scale analysis of whole genomes and meta-genomes, as well as in characterizing individual protein sequences. Herein we give an overview of new developments in the database and its associated software since 2009, including updates to database content, curation processes and Web and programmatic interfaces.
doi:10.1093/nar/gkr948
PMCID: PMC3245097  PMID: 22096229
3.  Improving protein secondary structure prediction using a simple k-mer model 
Bioinformatics  2010;26(5):596-602.
Motivation: Some first order methods for protein sequence analysis inherently treat each position as independent. We develop a general framework for introducing longer range interactions. We then demonstrate the power of our approach by applying it to secondary structure prediction; under the independence assumption, sequences produced by existing methods can produce features that are not protein like, an extreme example being a helix of length 1. Our goal was to make the predictions from state of the art methods more realistic, without loss of performance by other measures.
Results: Our framework for longer range interactions is described as a k-mer order model. We succeeded in applying our model to the specific problem of secondary structure prediction, to be used as an additional layer on top of existing methods. We achieved our goal of making the predictions more realistic and protein like, and remarkably this also improved the overall performance. We improve the Segment OVerlap (SOV) score by 1.8%, but more importantly we radically improve the probability of the real sequence given a prediction from an average of 0.271 per residue to 0.385. Crucially, this improvement is obtained using no additional information.
Availability: http://supfam.cs.bris.ac.uk/kmer
Contact: gough@cs.bris.ac.uk
doi:10.1093/bioinformatics/btq020
PMCID: PMC2828123  PMID: 20130034
4.  SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny 
Nucleic Acids Research  2008;37(Database issue):D380-D386.
SUPERFAMILY provides structural, functional and evolutionary information for proteins from all completely sequenced genomes, and large sequence collections such as UniProt. Protein domain assignments for over 900 genomes are included in the database, which can be accessed at http://supfam.org/. Hidden Markov models based on Structural Classification of Proteins (SCOP) domain definitions at the superfamily level are used to provide structural annotation. We recently produced a new model library based on SCOP 1.73. Family level assignments are also available. From the web site users can submit sequences for SCOP domain classification; search for keywords such as superfamilies, families, organism names, models and sequence identifiers; find over- and underrepresented families or superfamilies within a genome relative to other genomes or groups of genomes; compare domain architectures across selections of genomes and finally build multiple sequence alignments between Protein Data Bank (PDB), genomic and custom sequences. Recent extensions to the database include InterPro abstracts and Gene Ontology terms for superfamiles, taxonomic visualization of the distribution of families across the tree of life, searches for functionally similar domain architectures and phylogenetic trees. The database, models and associated scripts are available for download from the ftp site.
doi:10.1093/nar/gkn762
PMCID: PMC2686452  PMID: 19036790
5.  InterPro: the integrative protein signature database 
Nucleic Acids Research  2008;37(Database issue):D211-D215.
The InterPro database (http://www.ebi.ac.uk/interpro/) integrates together predictive models or ‘signatures’ representing protein domains, families and functional sites from multiple, diverse source databases: Gene3D, PANTHER, Pfam, PIRSF, PRINTS, ProDom, PROSITE, SMART, SUPERFAMILY and TIGRFAMs. Integration is performed manually and approximately half of the total ∼58 000 signatures available in the source databases belong to an InterPro entry. Recently, we have started to also display the remaining un-integrated signatures via our web interface. Other developments include the provision of non-signature data, such as structural data, in new XML files on our FTP site, as well as the inclusion of matchless UniProtKB proteins in the existing match XML files. The web interface has been extended and now links out to the ADAN predicted protein–protein interaction database and the SPICE and Dasty viewers. The latest public release (v18.0) covers 79.8% of UniProtKB (v14.1) and consists of 16 549 entries. InterPro data may be accessed either via the web address above, via web services, by downloading files by anonymous FTP or by using the InterProScan search software (http://www.ebi.ac.uk/Tools/InterProScan/).
doi:10.1093/nar/gkn785
PMCID: PMC2686546  PMID: 18940856
6.  Profile Comparer: a program for scoring and aligning profile hidden Markov models 
Bioinformatics  2008;24(22):2630-2631.
Summary: Profile Comparer (PRC) is a stand-alone program for scoring and aligning profile hidden Markov models (HMMs) of protein families. PRC can read models produced by SAM and HMMER, two popular profile HMM packages, as well as PSI-BLAST checkpoint files. This application note provides a brief description of the profile–profile algorithm used by PRC.
Availability: The C source code licensed under the GNU General Public Licence and Linux and Mac OS X binaries can be downloaded from http://supfam.org/PRC.
Contact: martin.madera@gmail.com
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btn504
PMCID: PMC2579712  PMID: 18845584
7.  New developments in the InterPro database 
Nucleic Acids Research  2007;35(Database issue):D224-D228.
InterPro is an integrated resource for protein families, domains and functional sites, which integrates the following protein signature databases: PROSITE, PRINTS, ProDom, Pfam, SMART, TIGRFAMs, PIRSF, SUPERFAMILY, Gene3D and PANTHER. The latter two new member databases have been integrated since the last publication in this journal. There have been several new developments in InterPro, including an additional reading field, new database links, extensions to the web interface and additional match XML files. InterPro has always provided matches to UniProtKB proteins on the website and in the match XML file on the FTP site. Additional matches to proteins in UniParc (UniProt archive) are now available for download in the new match XML files only. The latest InterPro release (13.0) contains more than 13 000 entries, covering over 78% of all proteins in UniProtKB. The database is available for text- and sequence-based searches via a webserver (), and for download by anonymous FTP (). The InterProScan search tool is now also available via a web service at .
doi:10.1093/nar/gkl841
PMCID: PMC1899100  PMID: 17202162
8.  The SUPERFAMILY database in 2007: families and functions 
Nucleic Acids Research  2006;35(Database issue):D308-D313.
The SUPERFAMILY database provides protein domain assignments, at the SCOP ‘superfamily’ level, for the predicted protein sequences in over 400 completed genomes. A superfamily groups together domains of different families which have a common evolutionary ancestor based on structural, functional and sequence data. SUPERFAMILY domain assignments are generated using an expert curated set of profile hidden Markov models. All models and structural assignments are available for browsing and download from . The web interface includes services such as domain architectures and alignment details for all protein assignments, searchable domain combinations, domain occurrence network visualization, detection of over- or under-represented superfamilies for a given genome by comparison with other genomes, assignment of manually submitted sequences and keyword searches. In this update we describe the SUPERFAMILY database and outline two major developments: (i) incorporation of family level assignments and (ii) a superfamily-level functional annotation. The SUPERFAMILY database can be used for general protein evolution and superfamily-specific studies, genomic annotation, and structural genomics target suggestion and assessment.
doi:10.1093/nar/gkl910
PMCID: PMC1669749  PMID: 17098927
9.  A Database of Bacterial Lipoproteins (DOLOP) with Functional Assignments to Predicted Lipoproteins 
Journal of Bacteriology  2006;188(8):2761-2773.
Lipid modification of the N-terminal Cys residue (N-acyl-S-diacylglyceryl-Cys) has been found to be an essential, ubiquitous, and unique bacterial posttranslational modification. Such a modification allows anchoring of even highly hydrophilic proteins to the membrane which carry out a variety of functions important for bacteria, including pathogenesis. Hence, being able to identify such proteins is of great value. To this end, we have created a comprehensive database of bacterial lipoproteins, called DOLOP, which contains information and links to molecular details for about 278 distinct lipoproteins and predicted lipoproteins from 234 completely sequenced bacterial genomes. The website also features a tool that applies a predictive algorithm to identify the presence or absence of the lipoprotein signal sequence in a user-given sequence. The experimentally verified lipoproteins have been classified into different functional classes and more importantly functional domain assignments using hidden Markov models from the SUPERFAMILY database that have been provided for the predicted lipoproteins. Other features include the following: primary sequence analysis, signal sequence analysis, and search facility and information exchange facility to allow researchers to exchange results on newly characterized lipoproteins. The website, along with additional information on the biosynthetic pathway, statistics on predicted lipoproteins, and related figures, is available at http://www.mrc-lmb.cam.ac.uk/genomes/dolop/.
doi:10.1128/JB.188.8.2761-2773.2006
PMCID: PMC1446993  PMID: 16585737
10.  The SUPERFAMILY database in 2004: additions and improvements 
Nucleic Acids Research  2004;32(Database issue):D235-D239.
The SUPERFAMILY database provides structural assignments to protein sequences and a framework for analysis of the results. At the core of the database is a library of profile Hidden Markov Models that represent all proteins of known structure. The library is based on the SCOP classification of proteins: each model corresponds to a SCOP domain and aims to represent an entire superfamily. We have applied the library to predicted proteins from all completely sequenced genomes (currently 154), the Swiss-Prot and TrEMBL databases and other sequence collections. Close to 60% of all proteins have at least one match, and one half of all residues are covered by assignments. All models and full results are available for download and online browsing at http://supfam.org. Users can study the distribution of their superfamily of interest across all completely sequenced genomes, investigate with which other superfamilies it combines and retrieve proteins in which it occurs. Alternatively, concentrating on a particular genome as a whole, it is possible first, to find out its superfamily composition, and secondly, to compare it with that of other genomes to detect superfamilies that are over- or under-represented. In addition, the webserver provides the following standard services: sequence search; keyword search for genomes, superfamilies and sequence identifiers; and multiple alignment of genomic, PDB and custom sequences.
doi:10.1093/nar/gkh117
PMCID: PMC308851  PMID: 14681402
11.  A comparison of profile hidden Markov model procedures for remote homology detection 
Nucleic Acids Research  2002;30(19):4321-4328.
Profile hidden Markov models (HMMs) are amongst the most successful procedures for detecting remote homology between proteins. There are two popular profile HMM programs, HMMER and SAM. Little is known about their performance relative to each other and to the recently improved version of PSI-BLAST. Here we compare the two programs to each other and to non-HMM methods, to determine their relative performance and the features that are important for their success. The quality of the multiple sequence alignments used to build models was the most important factor affecting the overall performance of profile HMMs. The SAM T99 procedure is needed to produce high quality alignments automatically, and the lack of an equivalent component in HMMER makes it less complete as a package. Using the default options and parameters as would be expected of an inexpert user, it was found that from identical alignments SAM consistently produces better models than HMMER and that the relative performance of the model-scoring components varies. On average, HMMER was found to be between one and three times faster than SAM when searching databases larger than 2000 sequences, SAM being faster on smaller ones. Both methods were shown to have effective low complexity and repeat sequence masking using their null models, and the accuracy of their E-values was comparable. It was found that the SAM T99 iterative database search procedure performs better than the most recent version of PSI-BLAST, but that scoring of PSI-BLAST profiles is more than 30 times faster than scoring of SAM models.
PMCID: PMC140544  PMID: 12364612

Results 1-11 (11)