PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
Document Types
1.  Assembly information services in the European Nucleotide Archive 
Nucleic Acids Research  2013;42(Database issue):D38-D43.
The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) is a repository for the world public domain nucleotide sequence data output. ENA content covers a spectrum of data types including raw reads, assembly data and functional annotation. ENA has faced a dramatic growth in genome assembly submission rates, data volumes and complexity of datasets. This has prompted a broad reworking of assembly submission services, for which we now reach the end of a major programme of work and many enhancements have already been made available over the year to components of the submission service. In this article, we briefly review ENA content and growth over 2013, describe our rapidly developing services for genome assembly information and outline further major developments over the last year.
doi:10.1093/nar/gkt1082
PMCID: PMC3965037  PMID: 24214989
2.  EBI metagenomics—a new resource for the analysis and archiving of metagenomic data 
Nucleic Acids Research  2013;42(Database issue):D600-D606.
Metagenomics is a relatively recently established but rapidly expanding field that uses high-throughput next-generation sequencing technologies to characterize the microbial communities inhabiting different ecosystems (including oceans, lakes, soil, tundra, plants and body sites). Metagenomics brings with it a number of challenges, including the management, analysis, storage and sharing of data. In response to these challenges, we have developed a new metagenomics resource (http://www.ebi.ac.uk/metagenomics/) that allows users to easily submit raw nucleotide reads for functional and taxonomic analysis by a state-of-the-art pipeline, and have them automatically stored (together with descriptive, standards-compliant metadata) in the European Nucleotide Archive.
doi:10.1093/nar/gkt961
PMCID: PMC3965009  PMID: 24165880
3.  Genetic Susceptibility to Non-Necrotizing Erysipelas/Cellulitis 
PLoS ONE  2013;8(2):e56225.
Background
Bacterial non-necrotizing erysipelas and cellulitis are often recurring, diffusely spreading infections of the skin and subcutaneous tissues caused most commonly by streptococci. Host genetic factors influence infection susceptibility but no extensive studies on the genetic determinants of human erysipelas exist.
Methods
We performed genome-wide linkage with the 10,000 variant Human Mapping Array (HMA10K) array on 52 Finnish families with multiple erysipelas cases followed by microsatellite fine mapping of suggestive linkage peaks. A scan with the HMA250K array was subsequently performed with a subset of cases and controls.
Results
Significant linkage was found at 9q34 (nonparametric multipoint linkage score (NPLall) 3.84, p = 0.026), which is syntenic to a quantitative trait locus for susceptibility to group A streptococci infections on chromosome 2 in mouse. Sequencing of candidate genes in the 9q34 region did not conclusively associate any to erysipelas/cellulitis susceptibility. Suggestive linkage (NPLall>3.0) was found at three loci: 3q22-24, 21q22, and 22q13. A subsequent denser genome scan with the HMA250K array supported the 3q22 locus, in which several SNPs in the promoter of AGTR1 (Angiotensin II receptor type I) suggestively associated with erysipelas/cellulitis susceptibility.
Conclusions
Specific host genetic factors may cause erysipelas/cellulitis susceptibility in humans.
doi:10.1371/journal.pone.0056225
PMCID: PMC3577772  PMID: 23437094
4.  Facing growth in the European Nucleotide Archive 
Nucleic Acids Research  2012;41(Database issue):D30-D35.
The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/) collects, maintains and presents comprehensive nucleic acid sequence and related information as part of the permanent public scientific record. Here, we provide brief updates on ENA content developments and major service enhancements in 2012 and describe in more detail two important areas of development and policy that are driven by ongoing growth in sequencing technologies. First, we describe the ENA data warehouse, a resource for which we provide a programmatic entry point to integrated content across the breadth of ENA. Second, we detail our plans for the deployment of CRAM data compression technology in ENA.
doi:10.1093/nar/gks1175
PMCID: PMC3531187  PMID: 23203883
5.  The 1000 Genomes Project: Data Management and Community Access 
Nature methods  2012;9(5):459-462.
The 1000 Genomes Project was launched as one of the largest distributed data collection and analysis projects ever undertaken in biology. In addition to the primary scientific goals of creating both a deep catalogue of human genetic variation and extensive methods to accurately discover and characterize variation using new sequencing technologies, the project makes all of its data publicly available for community use. The project data coordination center has developed and deployed several tools to enable widespread data access.
doi:10.1038/nmeth.1974
PMCID: PMC3340611  PMID: 22543379
6.  Major submissions tool developments at the European nucleotide archive 
Nucleic Acids Research  2011;40(Database issue):D43-D47.
The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena), Europe's primary nucleotide sequence resource, captures and presents globally comprehensive nucleic acid sequence and associated information. Covering the spectrum from raw data to assembled and functionally annotated genomes, the ENA has witnessed a dramatic growth resulting from advances in sequencing technology and ever broadening application of the methodology. During 2011, we have continued to operate and extend the broad range of ENA services. In particular, we have released major new functionality in our interactive web submission system, Webin, through developments in template-based submissions for annotated sequences and support for raw next-generation sequence read submissions.
doi:10.1093/nar/gkr946
PMCID: PMC3245037  PMID: 22080548
7.  The sequence read archive: explosive growth of sequencing data 
Nucleic Acids Research  2011;40(Database issue):D54-D56.
New generation sequencing platforms are producing data with significantly higher throughput and lower cost. A portion of this capacity is devoted to individual and community scientific projects. As these projects reach publication, raw sequencing datasets are submitted into the primary next-generation sequence data archive, the Sequence Read Archive (SRA). Archiving experimental data is the key to the progress of reproducible science. The SRA was established as a public repository for next-generation sequence data as a part of the International Nucleotide Sequence Database Collaboration (INSDC). INSDC is composed of the National Center for Biotechnology Information (NCBI), the European Bioinformatics Institute (EBI) and the DNA Data Bank of Japan (DDBJ). The SRA is accessible at www.ncbi.nlm.nih.gov/sra from NCBI, at www.ebi.ac.uk/ena from EBI and at trace.ddbj.nig.ac.jp from DDBJ. In this article, we present the content and structure of the SRA and report on updated metadata structures, submission file formats and supported sequencing platforms. We also briefly outline our various responses to the challenge of explosive data growth.
doi:10.1093/nar/gkr854
PMCID: PMC3245110  PMID: 22009675
8.  The Sequence Read Archive 
Nucleic Acids Research  2010;39(Database issue):D19-D21.
The combination of significantly lower cost and increased speed of sequencing has resulted in an explosive growth of data submitted into the primary next-generation sequence data archive, the Sequence Read Archive (SRA). The preservation of experimental data is an important part of the scientific record, and increasing numbers of journals and funding agencies require that next-generation sequence data are deposited into the SRA. The SRA was established as a public repository for the next-generation sequence data and is operated by the International Nucleotide Sequence Database Collaboration (INSDC). INSDC partners include the National Center for Biotechnology Information (NCBI), the European Bioinformatics Institute (EBI) and the DNA Data Bank of Japan (DDBJ). The SRA is accessible at http://www.ncbi.nlm.nih.gov/Traces/sra from NCBI, at http://www.ebi.ac.uk/ena from EBI and at http://trace.ddbj.nig.ac.jp from DDBJ. In this article, we present the content and structure of the SRA, detail our support for sequencing platforms and provide recommended data submission levels and formats. We also briefly outline our response to the challenge of data growth.
doi:10.1093/nar/gkq1019
PMCID: PMC3013647  PMID: 21062823
9.  The European Nucleotide Archive 
Nucleic Acids Research  2010;39(Database issue):D28-D31.
The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) is Europe’s primary nucleotide-sequence repository. The ENA consists of three main databases: the Sequence Read Archive (SRA), the Trace Archive and EMBL-Bank. The objective of ENA is to support and promote the use of nucleotide sequencing as an experimental research platform by providing data submission, archive, search and download services. In this article, we outline these services and describe major changes and improvements introduced during 2010. These include extended EMBL-Bank and SRA-data submission services, extended ENA Browser functionality, support for submitting data to the European Genome-phenome Archive (EGA) through SRA, and the launch of a new sequence similarity search service.
doi:10.1093/nar/gkq967
PMCID: PMC3013801  PMID: 20972220
10.  Improvements to services at the European Nucleotide Archive 
Nucleic Acids Research  2009;38(Database issue):D39-D45.
The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) is Europe’s primary nucleotide sequence archival resource, safeguarding open nucleotide data access, engaging in worldwide collaborative data exchange and integrating with the scientific publication process. ENA has made significant contributions to the collaborative nucleotide archival arena as an active proponent of extending the traditional collaboration to cover capillary and next-generation sequencing information. We have continued to co-develop data and metadata representation formats with our collaborators for both data exchange and public data dissemination. In addition to the DDBJ/EMBL/GenBank feature table format, we share metadata formats for capillary and next-generation sequencing traces and are using and contributing to the NCBI SRA Toolkit for the long-term storage of the next-generation sequence traces. During the course of 2009, ENA has significantly improved sequence submission, search and access functionalities provided at EMBL–EBI. In this article, we briefly describe the content and scope of our archive and introduce major improvements to our services.
doi:10.1093/nar/gkp998
PMCID: PMC2808951  PMID: 19906712
11.  Petabyte-scale innovations at the European Nucleotide Archive 
Nucleic Acids Research  2008;37(Database issue):D19-D25.
Dramatic increases in the throughput of nucleotide sequencing machines, and the promise of ever greater performance, have thrust bioinformatics into the era of petabyte-scale data sets. Sequence repositories, which provide the feed for these data sets into the worldwide computational infrastructure, are challenged by the impact of these data volumes. The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/embl), comprising the EMBL Nucleotide Sequence Database and the Ensembl Trace Archive, has identified challenges in the storage, movement, analysis, interpretation and visualization of petabyte-scale data sets. We present here our new repository for next generation sequence data, a brief summary of contents of the ENA and provide details of major developments to submission pipelines, high-throughput rule-based validation infrastructure and data integration approaches.
doi:10.1093/nar/gkn765
PMCID: PMC2686451  PMID: 18978013
12.  Priorities for nucleotide trace, sequence and annotation data capture at the Ensembl Trace Archive and the EMBL Nucleotide Sequence Database 
Nucleic Acids Research  2007;36(Database issue):D5-D12.
The Ensembl Trace Archive (http://trace.ensembl.org/) and the EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/), known together as the European Nucleotide Archive, continue to see growth in data volume and diversity. Selected major developments of 2007 are presented briefly, along with data submission and retrieval information. In the face of increasing requirements for nucleotide trace, sequence and annotation data archiving, data capture priority decisions have been taken at the European Nucleotide Archive. Priorities are discussed in terms of how reliably information can be captured, the long-term benefits of its capture and the ease with which it can be captured.
doi:10.1093/nar/gkm1018
PMCID: PMC2238915  PMID: 18039715
13.  The Protein Identifier Cross-Referencing (PICR) service: reconciling protein identifiers across multiple source databases 
BMC Bioinformatics  2007;8:401.
Background
Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs.
Results
We have created the Protein Identifier Cross-Reference (PICR) service, a web application that provides interactive and programmatic (SOAP and REST) access to a mapping algorithm that uses the UniProt Archive (UniParc) as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV) or Microsoft Excel (XLS) files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface.
Conclusion
We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR interface, documentation and code examples are available at .
doi:10.1186/1471-2105-8-401
PMCID: PMC2151082  PMID: 17945017
14.  EMBL Nucleotide Sequence Database in 2006 
Nucleic Acids Research  2006;35(Database issue):D16-D20.
The EMBL Nucleotide Sequence Database () at the EMBL European Bioinformatics Institute, UK, offers a large and freely accessible collection of nucleotide sequences and accompanying annotation. The database is maintained in collaboration with DDBJ and GenBank. Data are exchanged between the collaborating databases on a daily basis to achieve optimal synchrony. Webin is the preferred tool for individual submissions of nucleotide sequences, including Third Party Annotation, alignments and bulk data. Automated procedures are provided for submissions from large-scale sequencing projects and data from the European Patent Office. In 2006, the volume of data has continued to grow exponentially. Access to the data is provided via SRS, ftp and variety of other methods. Extensive external and internal cross-references enable users to search for related information across other databases and within the database. All available resources can be accessed via the EBI home page at . Changes over the past year include changes to the file format, further development of the EMBLCDS dataset and developments to the XML format.
doi:10.1093/nar/gkl913
PMCID: PMC1897316  PMID: 17148479
15.  EMBL Nucleotide Sequence Database: developments in 2005 
Nucleic Acids Research  2005;34(Database issue):D10-D15.
The EMBL Nucleotide Sequence Database () at the EMBL European Bioinformatics Institute, UK, offers a comprehensive set of publicly available nucleotide sequence and annotation, freely accessible to all. Maintained in collaboration with partners DDBJ and GenBank, coverage includes whole genome sequencing project data, directly submitted sequence, sequence recorded in support of patent applications and much more. The database continues to offer submission tools, data retrieval facilities and user support. In 2005, the volume of data offered has continued to grow exponentially. In addition to the newly presented data, the database encompasses a range of new data types generated by novel technologies, offers enhanced presentation and searchability of the data and has greater integration with other data resources offered at the EBI and elsewhere. In stride with these developing data types, the database has continued to develop submission and retrieval tools to maximise the information content of submitted data and to offer the simplest possible submission routes for data producers. New developments, the submission process, data retrieval and access to support are presented in this paper, along with links to sources of further information.
doi:10.1093/nar/gkj130
PMCID: PMC1347492  PMID: 16381823
16.  The EMBL Nucleotide Sequence Database 
Nucleic Acids Research  2004;32(Database issue):D27-D30.
The EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/), maintained at the European Bioinformatics Institute (EBI), incorporates, organizes and distributes nucleotide sequences from public sources. The database is a part of an international collaboration with DDBJ (Japan) and GenBank (USA). Data are exchanged between the collaborating databases on a daily basis to achieve optimal synchrony. The web-based tool, Webin, is the preferred system for individual submission of nucleotide sequences, including Third Party Annotation (TPA) and alignment data. Automatic submission procedures are used for submission of data from large-scale genome sequencing centres and from the European Patent Office. Database releases are produced quarterly. The latest data collection can be accessed via FTP, email and WWW interfaces. The EBI’s Sequence Retrieval System (SRS) integrates and links the main nucleotide and protein databases as well as many other specialist molecular biology databases. For sequence similarity searching, a variety of tools (e.g. FASTA and BLAST) are available that allow external users to compare their own sequences against the data in the EMBL Nucleotide Sequence Database, the complete genomic component subsection of the database, the WGS data sets and other databases. All available resources can be accessed via the EBI home page at http://www.ebi.ac.uk.
doi:10.1093/nar/gkh120
PMCID: PMC308854  PMID: 14681351
17.  The EMBL Nucleotide Sequence Database: major new developments 
Nucleic Acids Research  2003;31(1):17-22.
The EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/) incorporates, organizes and distributes nucleotide sequences from all available public sources. The database is located and maintained at the European Bioinformatics Institute (EBI) near Cambridge, UK. In an international collaboration with DDBJ (Japan) and GenBank (USA), data are exchanged amongst the collaborating databases on a daily basis to achieve optimal synchronization. Webin is the preferred web-based submission system for individual submitters, while automatic procedures allow incorporation of sequence data from large-scale genome sequencing centres and from the European Patent Office (EPO). Database releases are produced quarterly. Network services allow free access to the most up-to-date data collection via FTP, Email and World Wide Web interfaces. EBI's Sequence Retrieval System (SRS) integrates and links the main nucleotide and protein databases plus many other specialized molecular biology databases. For sequence similarity searching, a variety of tools (e.g. Fasta, BLAST) are available which allow external users to compare their own sequences against the latest data in the EMBL Nucleotide Sequence Database and SWISS-PROT. All resources can be accessed via the EBI home page at http://www.ebi.ac.uk.
PMCID: PMC165468  PMID: 12519939
18.  The EMBL Nucleotide Sequence Database 
Nucleic Acids Research  2002;30(1):21-26.
The EMBL Nucleotide Sequence Database (aka EMBL-Bank; http://www.ebi.ac.uk/embl/) incorporates, organises and distributes nucleotide sequences from all available public sources. EMBL-Bank is located and maintained at the European Bioinformatics Institute (EBI) near Cambridge, UK. In an international collaboration with DDBJ (Japan) and GenBank (USA), data are exchanged amongst the collaborating databases on a daily basis. Major contributors to the EMBL database are individual scientists and genome project groups. Webin is the preferred web-based submission system for individual submitters, whilst automatic procedures allow incorporation of sequence data from large-scale genome sequencing centres and from the European Patent Office (EPO). Database releases are produced quarterly. Network services allow free access to the most up-to-date data collection via FTP, email and World Wide Web interfaces. EBI’s Sequence Retrieval System (SRS), a network browser for databanks in molecular biology, integrates and links the main nucleotide and protein databases plus many other specialized databases. For sequence similarity searching, a variety of tools (e.g. Blitz, Fasta, BLAST) are available which allow external users to compare their own sequences against the latest data in the EMBL Nucleotide Sequence Database and SWISS-PROT. All resources can be accessed via the EBI home page at http://www.ebi.ac.uk.
PMCID: PMC99098  PMID: 11752244

Results 1-18 (18)