Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  New developments in the InterPro database 
Nucleic Acids Research  2007;35(Database issue):D224-D228.
InterPro is an integrated resource for protein families, domains and functional sites, which integrates the following protein signature databases: PROSITE, PRINTS, ProDom, Pfam, SMART, TIGRFAMs, PIRSF, SUPERFAMILY, Gene3D and PANTHER. The latter two new member databases have been integrated since the last publication in this journal. There have been several new developments in InterPro, including an additional reading field, new database links, extensions to the web interface and additional match XML files. InterPro has always provided matches to UniProtKB proteins on the website and in the match XML file on the FTP site. Additional matches to proteins in UniParc (UniProt archive) are now available for download in the new match XML files only. The latest InterPro release (13.0) contains more than 13 000 entries, covering over 78% of all proteins in UniProtKB. The database is available for text- and sequence-based searches via a webserver (), and for download by anonymous FTP (). The InterProScan search tool is now also available via a web service at .
PMCID: PMC1899100  PMID: 17202162
2.  PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways 
Nucleic Acids Research  2006;35(Database issue):D247-D252.
PANTHER is a freely available, comprehensive software system for relating protein sequence evolution to the evolution of specific protein functions and biological roles. Since 2005, there have been three main improvements to PANTHER. First, the sequences used to create evolutionary trees are carefully selected to provide coverage of phylogenetic as well as functional information. Second, PANTHER is now a member of the InterPro Consortium, and the PANTHER hidden markov Models (HMMs) are distributed as part of InterProScan. Third, we have dramatically expanded the number of pathways associated with subfamilies in PANTHER. Pathways provide a detailed, structured representation of protein function in the context of biological reaction networks. PANTHER pathways were generated using the emerging Systems Biology Markup Language (SBML) standard using pathway network editing software called CellDesigner. The pathway collection currently contains ∼1500 reactions in 130 pathways, curated by expert biologists with authorship attribution. The curation environment is designed to be easy to use, and the number of pathways is growing steadily. Because the reaction participants are linked to subfamilies and corresponding HMMs, reactions can be inferred across numerous different organisms. The HMMs can be downloaded by FTP, and tools for analyzing data in the context of pathways and function ontologies are available at .
PMCID: PMC1716723  PMID: 17130144
3.  Applications for protein sequence–function evolution data: mRNA/protein expression analysis and coding SNP scoring tools 
Nucleic Acids Research  2006;34(Web Server issue):W645-W650.
The vast amount of protein sequence data now available, together with accumulating experimental knowledge of protein function, enables modeling of protein sequence and function evolution. The PANTHER database was designed to model evolutionary sequence–function relationships on a large scale. There are a number of applications for these data, and we have implemented web services that address three of them. The first is a protein classification service. Proteins can be classified, using only their amino acid sequences, to evolutionary groups at both the family and subfamily levels. Specific subfamilies, and often families, are further classified when possible according to their functions, including molecular function and the biological processes and pathways they participate in. The second application, then, is an expression data analysis service, where functional classification information can help find biological patterns in the data obtained from genome-wide experiments. The third application is a coding single-nucleotide polymorphism scoring service. In this case, information about evolutionarily related proteins is used to assess the likelihood of a deleterious effect on protein function arising from a single substitution at a specific amino acid position in the protein. All three web services are available at .
PMCID: PMC1538848  PMID: 16912992
4.  Accurate Prediction of the Functional Significance of Single Nucleotide Polymorphisms and Mutations in the ABCA1 Gene 
PLoS Genetics  2005;1(6):e83.
The human genome contains an estimated 100,000 to 300,000 DNA variants that alter an amino acid in an encoded protein. However, our ability to predict which of these variants are functionally significant is limited. We used a bioinformatics approach to define the functional significance of genetic variation in the ABCA1 gene, a cholesterol transporter crucial for the metabolism of high density lipoprotein cholesterol. To predict the functional consequence of each coding single nucleotide polymorphism and mutation in this gene, we calculated a substitution position-specific evolutionary conservation score for each variant, which considers site-specific variation among evolutionarily related proteins. To test the bioinformatics predictions experimentally, we evaluated the biochemical consequence of these sequence variants by examining the ability of cell lines stably transfected with the ABCA1 alleles to elicit cholesterol efflux. Our bioinformatics approach correctly predicted the functional impact of greater than 94% of the naturally occurring variants we assessed. The bioinformatics predictions were significantly correlated with the degree of functional impairment of ABCA1 mutations (r2 = 0.62, p = 0.0008). These results have allowed us to define the impact of genetic variation on ABCA1 function and to suggest that the in silico evolutionary approach we used may be a useful tool in general for predicting the effects of DNA variation on gene function. In addition, our data suggest that considering patterns of positive selection, along with patterns of negative selection such as evolutionary conservation, may improve our ability to predict the functional effects of amino acid variation.
A major goal of human genetics research is to understand how genetic variation leads to differences in the function of genes. Genome sequencing projects have generated large amounts of sequence data, yet our ability to predict which specific sequence variants will result in functional differences is currently limited. To address this problem, the authors use an evolutionary model to predict the functional significance of genetic variation in the ABCA1 gene. To predict the functional impact of genetic variation in this gene, the authors compare the specific sites at which the variants occurred in evolutionarily related proteins and generated a likelihood score of functional impairment. These predictions were then compared to actual functional measurements of each variant. The authors show that it is possible to accurately predict which specific variants will affect ABCA1 function and to what extent. These results suggest that the evolutionary approach used may be a useful method in general for determining the functional consequence of genetic variation, which should aid in the study of how genetic variation contributes to phenotypic differences.
PMCID: PMC1342637  PMID: 16429166
5.  PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification 
Nucleic Acids Research  2003;31(1):334-341.
The PANTHER database was designed for high-throughput analysis of protein sequences. One of the key features is a simplified ontology of protein function, which allows browsing of the database by biological functions. Biologist curators have associated the ontology terms with groups of protein sequences rather than individual sequences. Statistical models (Hidden Markov Models, or HMMs) are built from each of these groups. The advantage of this approach is that new sequences can be automatically classified as they become available. To ensure accurate functional classification, HMMs are constructed not only for families, but also for functionally distinct subfamilies. Multiple sequence alignments and phylogenetic trees, including curator-assigned information, are available for each family. The current version of the PANTHER database includes training sequences from all organisms in the GenBank non-redundant protein database, and the HMMs have been used to classify gene products across the entire genomes of human, and Drosophila melanogaster. PANTHER is publicly available on the web at
PMCID: PMC165562  PMID: 12520017

Results 1-5 (5)