Search tips
Search criteria

Results 1-25 (47)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Genome Sequence of the Radioresistant Bacterium Deinococcus radiodurans R1 
Science (New York, N.Y.)  1999;286(5444):1571-1577.
The complete genome sequence of the radiation resistant bacterium Deinococcus radiodurans R1 is composed of two chromosomes (2,648,615 and 412,340 basepairs), a megaplasmid (177,466 basepairs), and a small plasmid (45,702 basepairs) yielding a total genome of 3,284,123 basepairs. Multiple components distributed on the chromosomes and megaplasmid that contribute to the ability of D. radiodurans to survive under conditions of starvation, oxidative stress, and high levels of DNA-damage have been identified. D. radiodurans represents an organism in which all systems for DNA repair, DNA damage export, desiccation and starvation recovery, and genetic redundancy are present in one cell.
PMCID: PMC4147723  PMID: 10567266
2.  Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases 
Nucleic Acids Research  2014;42(14):e111.
Toward achieving rapid and large scale genome modification directly in a target organism, we have developed a new genome engineering strategy that uses a combination of bioinformatics aided design, large synthetic DNA and site-specific recombinases. Using Cre recombinase we swapped a target 126-kb segment of the Escherichia coli genome with a 72-kb synthetic DNA cassette, thereby effectively eliminating over 54 kb of genomic DNA from three non-contiguous regions in a single recombination event. We observed complete replacement of the native sequence with the modified synthetic sequence through the action of the Cre recombinase and no competition from homologous recombination. Because of the versatility and high-efficiency of the Cre-lox system, this method can be used in any organism where this system is functional as well as adapted to use with other highly precise genome engineering systems. Compared to present-day iterative approaches in genome engineering, we anticipate this method will greatly speed up the creation of reduced, modularized and optimized genomes through the integration of deletion analyses data, transcriptomics, synthetic biology and site-specific recombination.
PMCID: PMC4132700  PMID: 24914053
3.  Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature 
Natural product reports  2013;30(1):108-160.
This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
PMCID: PMC3954855  PMID: 23165928
4.  A Comparison of Methanobactins from Methylosinus trichosporium OB3b and Methylocystis Strain SB2 Predicts Methanobactins Are Synthesized from Diverse Peptide Precursors Modified To Create a Common Core for Binding and Reducing Copper Ions† 
Biochemistry  2010;49(47):10117-10130.
Methanobactins (mb) are low-molecular mass, copper-binding molecules secreted by most methanotrophic bacteria. These molecules have been identified for a number of methanotrophs, but only the one produced by Methylosinus trichosporium OB3b (mb-OB3b) has to date been chemically characterized. Here we report the chemical characterization and copper binding properties of a second methanobactin, which is produced by Methylocystis strain SB2 (mb-SB2). mb-SB2 shows some significant similarities to mb-OB3b, including its spectral and metal binding properties, and its ability to bind and reduce Cu(II) to Cu(I). Like mb-OB3b, mb-SB2 contains two five-member heterocyclic rings with associated enethiol groups, which together form the copper ion binding site. mb-SB2 also displays some significant differences compared to mb-OB3b, including the number and types of amino acids used to complete the structure of the molecule, the presence of an imidazolone ring in place of one of the oxazolone rings found in mb-OB3b, and the presence of a sulfate group not found in mb-OB3b. The sulfate is bonded to a threonine-like side chain that is associated with one of the heterocyclic rings and may represent the first example of this type of sulfate group found in a bacterially derived peptide. Acid-catalyzed hydrolysis and decarboxylation of the oxazolone rings found in mb-OB3b and mb-SB2 produce pairs of amino acid residues and suggest that both mb-OB3b and mb-SB2 are derived from peptides. In support of this, the gene for a ribosomally produced peptide precursor for mb-OB3b has been identified in the genome of M. trichosporium OB3b. The gene sequence indicates that the oxazolone rings in mb-OB3b are derived from the combination of a cysteine residue and the carbonyl from the preceding residue in the peptide sequence. Taken together, the results suggest methanobactins make up a structurally diverse group of ribosomally produced, peptide-derived molecules, which share a common pair of five-member rings with associated enethiol groups that are able to bind, reduce, and stabilize copper ions in an aqueous environment.
PMCID: PMC3924600  PMID: 20961038
5.  Novel and Widespread Adenosine Nucleotide-Binding in Mycobacterium tuberculosis 
Chemistry & biology  2013;20(1):123-133.
Computational prediction of protein function is frequently error-prone and incomplete. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins, severely limiting our understanding of Mtb pathogenicity. Here, we utilize a high throughput, quantitative, activity-based protein profiling (ABPP) platform to probe, annotate, and validate ATP-binding proteins in Mtb. We experimentally validate prior in silico predictions of >250 proteins and identify 72 hypothetical proteins as novel ATP binders. ATP interacts with proteins with diverse and unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Several hypothetical ATP binders are essential or taxonomically limited, suggesting specialized functions in mycobacterial physiology and pathogenicity.
PMCID: PMC3558932  PMID: 23352146
6.  New Insights into Dissemination and Variation of the Health Care-Associated Pathogen Acinetobacter baumannii from Genomic Analysis 
mBio  2014;5(1):e00963-13.
Acinetobacter baumannii is a globally important nosocomial pathogen characterized by an increasing incidence of multidrug resistance. Routes of dissemination and gene flow among health care facilities are poorly resolved and are important for understanding the epidemiology of A. baumannii, minimizing disease transmission, and improving patient outcomes. We used whole-genome sequencing to assess diversity and genome dynamics in 49 isolates from one United States hospital system during one year from 2007 to 2008. Core single-nucleotide-variant-based phylogenetic analysis revealed multiple founder strains and multiple independent strains recovered from the same patient yet was insufficient to fully resolve strain relationships, where gene content and insertion sequence patterns added additional discriminatory power. Gene content comparisons illustrated extensive and redundant antibiotic resistance gene carriage and direct evidence of gene transfer, recombination, gene loss, and mutation. Evidence of barriers to gene flow among hospital components was not found, suggesting complex mixing of strains and a large reservoir of A. baumannii strains capable of colonizing patients.
Genome sequencing was used to characterize multidrug-resistant Acinetobacter baumannii strains from one United States hospital system during a 1-year period to better understand how A. baumannii strains that cause infection are related to one another. Extensive variation in gene content was found, even among strains that were very closely related phylogenetically and epidemiologically. Several mechanisms contributed to this diversity, including transfer of mobile genetic elements, mobilization of insertion sequences, insertion sequence-mediated deletions, and genome-wide homologous recombination. Variation in gene content, however, lacked clear spatial or temporal patterns, suggesting a diverse pool of circulating strains with considerable interaction between strains and hospital locations. Widespread genetic variation among strains from the same hospital and even the same patient, particularly involving antibiotic resistance genes, reinforces the need for molecular diagnostic testing and genomic analysis to determine resistance profiles, rather than a reliance primarily on strain typing and antimicrobial resistance phenotypes for epidemiological studies.
PMCID: PMC3903280  PMID: 24449752
7.  Genome sequence of the human malaria parasite Plasmodium falciparum 
Nature  2002;419(6906):10.1038/nature01097.
The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.
PMCID: PMC3836256  PMID: 12368864
8.  Pathogenomic Inference of Virulence-Associated Genes in Leptospira interrogans 
Leptospirosis is a globally important, neglected zoonotic infection caused by spirochetes of the genus Leptospira. Since genetic transformation remains technically limited for pathogenic Leptospira, a systems biology pathogenomic approach was used to infer leptospiral virulence genes by whole genome comparison of culture-attenuated Leptospira interrogans serovar Lai with its virulent, isogenic parent. Among the 11 pathogen-specific protein-coding genes in which non-synonymous mutations were found, a putative soluble adenylate cyclase with host cell cAMP-elevating activity, and two members of a previously unstudied ∼15 member paralogous gene family of unknown function were identified. This gene family was also uniquely found in the alpha-proteobacteria Bartonella bacilliformis and Bartonella australis that are geographically restricted to the Andes and Australia, respectively. How the pathogenic Leptospira and these two Bartonella species came to share this expanded gene family remains an evolutionary mystery. In vivo expression analyses demonstrated up-regulation of 10/11 Leptospira genes identified in the attenuation screen, and profound in vivo, tissue-specific up-regulation by members of the paralogous gene family, suggesting a direct role in virulence and host-pathogen interactions. The pathogenomic experimental design here is generalizable as a functional systems biology approach to studying bacterial pathogenesis and virulence and should encourage similar experimental studies of other pathogens.
Author Summary
Leptospirosis is one of the most common diseases transmitted by animals worldwide. It is important because it causes an often lethal febrile illnesses in tropical and subtropical areas associated with poor sanitation and agriculture. Leptospirosis may be epidemic, associated with natural disasters and flooding, or endemic in tropical regions. It is unknown how Leptospira cause disease and why different strains cause different severity of illness. In this study we attenuated (weakened) a highly virulent strain of L. interrogans by culturing it in vitro over several months. Comparison of the whole genome sequence before and after the attenuation process revealed a small set of genes that were mutated, and therefore associated with virulence. We discovered a putative soluble adenylate cyclase with host cell cAMP elevating activity, with implications for immune evasion and a new gene family that is upregulated in vivo during acute hamster infection. Interestingly, both Bartonella bacilliformis and Bartonella australis also have this unique gene family we describe in pathogenic Leptospira. This information aids in our understanding of Leptospira evolution and pathogenesis.
PMCID: PMC3789758  PMID: 24098822
9.  The COMBREX Project: Design, Methodology, and Initial Results 
Anton, Brian P. | Chang, Yi-Chien | Brown, Peter | Choi, Han-Pil | Faller, Lina L. | Guleria, Jyotsna | Hu, Zhenjun | Klitgord, Niels | Levy-Moonshine, Ami | Maksad, Almaz | Mazumdar, Varun | McGettrick, Mark | Osmani, Lais | Pokrzywa, Revonda | Rachlin, John | Swaminathan, Rajeswari | Allen, Benjamin | Housman, Genevieve | Monahan, Caitlin | Rochussen, Krista | Tao, Kevin | Bhagwat, Ashok S. | Brenner, Steven E. | Columbus, Linda | de Crécy-Lagard, Valérie | Ferguson, Donald | Fomenkov, Alexey | Gadda, Giovanni | Morgan, Richard D. | Osterman, Andrei L. | Rodionov, Dmitry A. | Rodionova, Irina A. | Rudd, Kenneth E. | Söll, Dieter | Spain, James | Xu, Shuang-yong | Bateman, Alex | Blumenthal, Robert M. | Bollinger, J. Martin | Chang, Woo-Suk | Ferrer, Manuel | Friedberg, Iddo | Galperin, Michael Y. | Gobeill, Julien | Haft, Daniel | Hunt, John | Karp, Peter | Klimke, William | Krebs, Carsten | Macelis, Dana | Madupu, Ramana | Martin, Maria J. | Miller, Jeffrey H. | O'Donovan, Claire | Palsson, Bernhard | Ruch, Patrick | Setterdahl, Aaron | Sutton, Granger | Tate, John | Yakunin, Alexander | Tchigvintsev, Dmitri | Plata, Germán | Hu, Jie | Greiner, Russell | Horn, David | Sjölander, Kimmen | Salzberg, Steven L. | Vitkup, Dennis | Letovsky, Stanley | Segrè, Daniel | DeLisi, Charles | Roberts, Richard J. | Steffen, Martin | Kasif, Simon
PLoS Biology  2013;11(8):e1001638.
Experimental data exists for only a vanishingly small fraction of sequenced microbial genes. This community page discusses the progress made by the COMBREX project to address this important issue using both computational and experimental resources.
PMCID: PMC3754883  PMID: 24013487
10.  TIGRFAMs and Genome Properties in 2013 
Nucleic Acids Research  2012;41(Database issue):D387-D395.
TIGRFAMs, available online at is a database of protein family definitions. Each entry features a seed alignment of trusted representative sequences, a hidden Markov model (HMM) built from that alignment, cutoff scores that let automated annotation pipelines decide which proteins are members, and annotations for transfer onto member proteins. Most TIGRFAMs models are designated equivalog, meaning they assign a specific name to proteins conserved in function from a common ancestral sequence. Models describing more functionally heterogeneous families are designated subfamily or domain, and assign less specific but more widely applicable annotations. The Genome Properties database, available at, specifies how computed evidence, including TIGRFAMs HMM results, should be used to judge whether an enzymatic pathway, a protein complex or another type of molecular subsystem is encoded in a genome. TIGRFAMs and Genome Properties content are developed in concert because subsystems reconstruction for large numbers of genomes guides selection of seed alignment sequences and cutoff values during protein family construction. Both databases specialize heavily in bacterial and archaeal subsystems. At present, 4284 models appear in TIGRFAMs, while 628 systems are described by Genome Properties. Content derives both from subsystem discovery work and from biocuration of the scientific literature.
PMCID: PMC3531188  PMID: 23197656
11.  Archaeosortases and Exosortases Are Widely Distributed Systems Linking Membrane Transit with Posttranslational Modification 
Journal of Bacteriology  2012;194(1):36-48.
Multiple new prokaryotic C-terminal protein-sorting signals were found that reprise the tripartite architecture shared by LPXTG and PEP-CTERM: motif, TM helix, basic cluster. Defining hidden Markov models were constructed for all. PGF-CTERM occurs in 29 archaeal species, some of which have more than 50 proteins that share the domain. PGF-CTERM proteins include the major cell surface protein in Halobacterium, a glycoprotein with a partially characterized diphytanylglyceryl phosphate linkage near its C terminus. Comparative genomics identifies a distant exosortase homolog, designated archaeosortase A (ArtA), as the likely protein-processing enzyme for PGF-CTERM. Proteomics suggests that the PGF-CTERM region is removed. Additional systems include VPXXXP-CTERM/archeaosortase B in two of the same archaea and PEF-CTERM/archaeosortase C in four others. Bacterial exosortases often fall into subfamilies that partner with very different cohorts of extracellular polymeric substance biosynthesis proteins; several species have multiple systems. Variant systems include the VPDSG-CTERM/exosortase C system unique to certain members of the phylum Verrucomicrobia, VPLPA-CTERM/exosortase D in several alpha- and deltaproteobacterial species, and a dedicated (single-target) VPEID-CTERM/exosortase E system in alphaproteobacteria. Exosortase-related families XrtF in the class Flavobacteria and XrtG in Gram-positive bacteria mark distinctive conserved gene neighborhoods. A picture emerges of an ancient and now well-differentiated superfamily of deeply membrane-embedded protein-processing enzymes. Their target proteins are destined to transit cellular membranes during their biosynthesis, during which most undergo additional posttranslational modifications such as glycosylation.
PMCID: PMC3256604  PMID: 22037399
12.  Evolution and classification of the CRISPR-Cas systems 
Nature Reviews. Microbiology  2011;9(6):467-477.
The CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) modules are adaptive immunity systems that are present in many archaea and bacteria. These defence systems are encoded by operons that have an extraordinarily diverse architecture and a high rate of evolution for both the cas genes and the unique spacer content. Here, we provide an updated analysis of the evolutionary relationships between CRISPR–Cas systems and Cas proteins. Three major types of CRISPR–Cas system are delineated, with a further division into several subtypes and a few chimeric variants. Given the complexity of the genomic architectures and the extremely dynamic evolution of the CRISPR–Cas systems, a unified classification of these systems should be based on multiple criteria. Accordingly, we propose a `polythetic' classification that integrates the phylogenies of the most common cas genes, the sequence and organization of the CRISPR repeats and the architecture of the CRISPR–cas loci.
PMCID: PMC3380444  PMID: 21552286
14.  Cell Contact–Dependent Outer Membrane Exchange in Myxobacteria: Genetic Determinants and Mechanism 
PLoS Genetics  2012;8(4):e1002626.
Biofilms are dense microbial communities. Although widely distributed and medically important, how biofilm cells interact with one another is poorly understood. Recently, we described a novel process whereby myxobacterial biofilm cells exchange their outer membrane (OM) lipoproteins. For the first time we report here the identification of two host proteins, TraAB, required for transfer. These proteins are predicted to localize in the cell envelope; and TraA encodes a distant PA14 lectin-like domain, a cysteine-rich tandem repeat region, and a putative C-terminal protein sorting tag named MYXO-CTERM, while TraB encodes an OmpA-like domain. Importantly, TraAB are required in donors and recipients, suggesting bidirectional transfer. By use of a lipophilic fluorescent dye, we also discovered that OM lipids are exchanged. Similar to lipoproteins, dye transfer requires TraAB function, gliding motility and a structured biofilm. Importantly, OM exchange was found to regulate swarming and development behaviors, suggesting a new role in cell–cell communication. A working model proposes TraA is a cell surface receptor that mediates cell–cell adhesion for OM fusion, in which lipoproteins/lipids are transferred by lateral diffusion. We further hypothesize that cell contact–dependent exchange helps myxobacteria to coordinate their social behaviors.
Author Summary
All cells interact with their environment, including other cells, to elicit cellular responses. Cell–cell interactions between eukaryotic cells are widely appreciated as large multicellular organisms coordinate cell behaviors for tissue and organ functions. In bacteria cell–cell interactions are not widely appreciated, as these organisms are relatively simple and are often depicted as single-cell entities. However, over the past decade, the concept of bacteria living in microbial communities or biofilms has received broad acceptance as a major lifestyle. As biofilm cells are packed in tight physical contact, there is an opportunity for cell–cell signaling to provide spatial and physiological clues of neighboring cells to elicit cellular responses. Although much has been learned about diffusible signals through quorum sensing, little is known about cell contact–dependent signaling in bacteria. In this report we describe a new mechanism where bacterial cells within structured biofilms form contacts that allow cellular material to be exchanged. This exchange elicits phenotypic changes, including in cell movements and development. We hypothesize that OM exchange involves kin recognition that bestows social benefits to myxobacterial populations.
PMCID: PMC3325183  PMID: 22511878
15.  AntiFam: a tool to help identify spurious ORFs in protein annotation 
As the deluge of genomic DNA sequence grows the fraction of protein sequences that have been manually curated falls. In turn, as the number of laboratories with the ability to sequence genomes in a high-throughput manner grows, the informatics capability of those labs to accurately identify and annotate all genes within a genome may often be lacking. These issues have led to fears about transitive annotation errors making sequence databases less reliable. During the lifetime of the Pfam protein families database a number of protein families have been built, which were later identified as composed solely of spurious open reading frames (ORFs) either on the opposite strand or in a different, overlapping reading frame with respect to the true protein-coding or non-coding RNA gene. These families were deleted and are no longer available in Pfam. However, we realized that these may perform a useful function to identify new spurious ORFs. We have collected these families together in AntiFam along with additional custom-made families of spurious ORFs. This resource currently contains 23 families that identified 1310 spurious proteins in UniProtKB and a further 4119 spurious proteins in a collection of metagenomic sequences. UniProt has adopted AntiFam as a part of the UniProtKB quality control process and will investigate these spurious proteins for exclusion.
PMCID: PMC3308159  PMID: 22434837
16.  GlyGly-CTERM and Rhombosortase: A C-Terminal Protein Processing Signal in a Many-to-One Pairing with a Rhomboid Family Intramembrane Serine Protease 
PLoS ONE  2011;6(12):e28886.
The rhomboid family of serine proteases occurs in all domains of life. Its members contain at least six hydrophobic membrane-spanning helices, with an active site serine located deep within the hydrophobic interior of the plasma membrane. The model member GlpG from Escherichia coli is heavily studied through engineered mutant forms, varied model substrates, and multiple X-ray crystal studies, yet its relationship to endogenous substrates is not well understood. Here we describe an apparent membrane anchoring C-terminal homology domain that appears in numerous genera including Shewanella, Vibrio, Acinetobacter, and Ralstonia, but excluding Escherichia and Haemophilus. Individual genomes encode up to thirteen members, usually homologous to each other only in this C-terminal region. The domain's tripartite architecture consists of motif, transmembrane helix, and cluster of basic residues at the protein C-terminus, as also seen with the LPXTG recognition sequence for sortase A and the PEP-CTERM recognition sequence for exosortase. Partial Phylogenetic Profiling identifies a distinctive rhomboid-like protease subfamily almost perfectly co-distributed with this recognition sequence. This protease subfamily and its putative target domain are hereby renamed rhombosortase and GlyGly-CTERM, respectively. The protease and target are encoded by consecutive genes in most genomes with just a single target, but far apart otherwise. The signature motif of the Rhombo-CTERM domain, often SGGS, only partially resembles known cleavage sites of rhomboid protease family model substrates. Some protein families that have several members with C-terminal GlyGly-CTERM domains also have additional members with LPXTG or PEP-CTERM domains instead, suggesting there may be common themes to the post-translational processing of these proteins by three different membrane protein superfamilies.
PMCID: PMC3237569  PMID: 22194940
17.  CharProtDB: a database of experimentally characterized protein annotations 
Nucleic Acids Research  2011;40(Database issue):D237-D241.
CharProtDB ( is a curated database of biochemically characterized proteins. It provides a source of direct rather than transitive assignments of function, designed to support automated annotation pipelines. The initial data set in CharProtDB was collected through manual literature curation over the years by analysts at the J. Craig Venter Institute (JCVI) [formerly The Institute of Genomic Research (TIGR)] as part of their prokaryotic genome sequencing projects. The CharProtDB has been expanded by import of selected records from publicly available protein collections whose biocuration indicated direct rather than homology-based assignment of function. Annotations in CharProtDB include gene name, symbol and various controlled vocabulary terms, including Gene Ontology terms, Enzyme Commission number and TransportDB accession. Each annotation is referenced with the source; ideally a journal reference, or, if imported and lacking one, the original database source.
PMCID: PMC3245046  PMID: 22140108
18.  Biological Systems Discovery In Silico: Radical S-Adenosylmethionine Protein Families and Their Target Peptides for Posttranslational Modification▿† 
Journal of Bacteriology  2011;193(11):2745-2755.
Data mining methods in bioinformatics and comparative genomics commonly rely on working definitions of protein families from prior computation. Partial phylogenetic profiling (PPP), by contrast, optimizes family sizes during its searches for the cooccurring protein families that serve different roles in the same biological system. In a large-scale investigation of the incredibly diverse radical S-adenosylmethionine (SAM) enzyme superfamily, PPP aided in building a collection of 68 TIGRFAMs hidden Markov models (HMMs) that define nonoverlapping and functionally distinct subfamilies. Many identify radical SAM enzymes as molecular markers for multicomponent biological systems; HMMs defining their partner proteins also were constructed. Newly found systems include five groupings of protein families in which at least one marker is a radical SAM enzyme while another, encoded by an adjacent gene, is a short peptide predicted to be its substrate for posttranslational modification. The most prevalent, in over 125 genomes, featuring a peptide that we designate SCIFF (six cysteines in forty-five residues), is conserved throughout the class Clostridia, a distribution inconsistent with putative bacteriocin activity. A second novel system features a tandem pair of putative peptide-modifying radical SAM enzymes associated with a highly divergent family of peptides in which the only clearly conserved feature is a run of His-Xaa-Ser repeats. A third system pairs a radical SAM domain peptide maturase with selenocysteine-containing targets, suggesting a new biological role for selenium. These and several additional novel maturases that cooccur with predicted target peptides share a C-terminal additional 4Fe4S-binding domain with PqqE, the subtilosin A maturase AlbA, and the predicted mycofactocin and Nif11-class peptide maturases as well as with activators of anaerobic sulfatases and quinohemoprotein amine dehydrogenases. Radical SAM enzymes with this additional domain, as detected by TIGR04085, significantly outnumber lantibiotic synthases and cyclodehydratases combined in reference genomes while being highly enriched for members whose apparent targets are small peptides. Interpretation of comparative genomics evidence suggests unexpected (nonbacteriocin) roles for natural products from several of these systems.
PMCID: PMC3133131  PMID: 21478363
19.  InterPro in 2011: new developments in the family and domain prediction database 
Nucleic Acids Research  2011;40(Database issue):D306-D312.
InterPro ( is a database that integrates diverse information about protein families, domains and functional sites, and makes it freely available to the public via Web-based interfaces and services. Central to the database are diagnostic models, known as signatures, against which protein sequences can be searched to determine their potential function. InterPro has utility in the large-scale analysis of whole genomes and meta-genomes, as well as in characterizing individual protein sequences. Herein we give an overview of new developments in the database and its associated software since 2009, including updates to database content, curation processes and Web and programmatic interfaces.
PMCID: PMC3245097  PMID: 22096229
20.  ProPhylo: partial phylogenetic profiling to guide protein family construction and assignment of biological process 
BMC Bioinformatics  2011;12:434.
Phylogenetic profiling is a technique of scoring co-occurrence between a protein family and some other trait, usually another protein family, across a set of taxonomic groups. In spite of several refinements in recent years, the technique still invites significant improvement. To be its most effective, a phylogenetic profiling algorithm must be able to examine co-occurrences among protein families whose boundaries are uncertain within large homologous protein superfamilies.
Partial Phylogenetic Profiling (PPP) is an iterative algorithm that scores a given taxonomic profile against the taxonomic distribution of families for all proteins in a genome. The method works through optimizing the boundary of each protein family, rather than by relying on prebuilt protein families or fixed sequence similarity thresholds. Double Partial Phylogenetic Profiling (DPPP) is a related procedure that begins with a single sequence and searches for optimal granularities for its surrounding protein family in order to generate the best query profiles for PPP. We present ProPhylo, a high-performance software package for phylogenetic profiling studies through creating individually optimized protein family boundaries. ProPhylo provides precomputed databases for immediate use and tools for manipulating the taxonomic profiles used as queries.
ProPhylo results show universal markers of methanogenesis, a new DNA phosphorothioation-dependent restriction enzyme, and efficacy in guiding protein family construction. The software and the associated databases are freely available under the open source Perl Artistic License from
PMCID: PMC3226654  PMID: 22070167
21.  SMURF: genomic mapping of fungal secondary metabolite clusters 
Fungi produce an impressive array of secondary metabolites (SMs) including mycotoxins, antibiotics and pharmaceuticals. The genes responsible for their biosynthesis, export, and transcriptional regulation are often found in contiguous gene clusters. To facilitate annotation of these clusters in sequenced fungal genomes, we developed the web-based software SMURF ( to systematically predict clustered SM genes based on their genomic context and domain content. We applied SMURF to catalog putative clusters in 27 publicly available fungal genomes. Comparison with genetically characterized clusters from six fungal species showed that SMURF accurately recovered all clusters and detected additional potential clusters. Subsequent comparative analysis revealed the striking biosynthetic capacity and variability of the fungal SM pathways and the correlation between unicellularity and the absence of SMs. Further genetics studies are needed to experimentally confirm these clusters.
PMCID: PMC2916752  PMID: 20554054
NRPS; PKS; prenyltransferases; polyketides; antibiotics; secondary metabolism; filamentous fungi; Aspergillus; genome annotation
22.  Unexpected Abundance of Coenzyme F420-Dependent Enzymes in Mycobacterium tuberculosis and Other Actinobacteria▿ †  
Journal of Bacteriology  2010;192(21):5788-5798.
Regimens targeting Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), require long courses of treatment and a combination of three or more drugs. An increase in drug-resistant strains of M. tuberculosis demonstrates the need for additional TB-specific drugs. A notable feature of M. tuberculosis is coenzyme F420, which is distributed sporadically and sparsely among prokaryotes. This distribution allows for comparative genomics-based investigations. Phylogenetic profiling (comparison of differential gene content) based on F420 biosynthesis nominated many actinobacterial proteins as candidate F420-dependent enzymes. Three such families dominated the results: the luciferase-like monooxygenase (LLM), pyridoxamine 5′-phosphate oxidase (PPOX), and deazaflavin-dependent nitroreductase (DDN) families. The DDN family was determined to be limited to F420-producing species. The LLM and PPOX families were observed in F420-producing species as well as species lacking F420 but were particularly numerous in many actinobacterial species, including M. tuberculosis. Partitioning the LLM and PPOX families based on an organism's ability to make F420 allowed the application of the SIMBAL (sites inferred by metabolic background assertion labeling) profiling method to identify F420-correlated subsequences. These regions were found to correspond to flavonoid cofactor binding sites. Significantly, these results showed that M. tuberculosis carries at least 28 separate F420-dependent enzymes, most of unknown function, and a paucity of flavin mononucleotide (FMN)-dependent proteins in these families. While prevalent in mycobacteria, markers of F420 biosynthesis appeared to be absent from the normal human gut flora. These findings suggest that M. tuberculosis relies heavily on coenzyme F420 for its redox reactions. This dependence and the cofactor's rarity may make F420-related proteins promising drug targets.
PMCID: PMC2953692  PMID: 20675471
23.  Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners 
BMC Genomics  2011;12:21.
Enzymes in the radical SAM (rSAM) domain family serve in a wide variety of biological processes, including RNA modification, enzyme activation, bacteriocin core peptide maturation, and cofactor biosynthesis. Evolutionary pressures and relationships to other cellular constituents impose recognizable grammars on each class of rSAM-containing system, shaping patterns in results obtained through various comparative genomics analyses.
An uncharacterized gene cluster found in many Actinobacteria and sporadically in Firmicutes, Chloroflexi, Deltaproteobacteria, and one Archaeal plasmid contains a PqqE-like rSAM protein family that includes Rv0693 from Mycobacterium tuberculosis. Members occur clustered with a strikingly well-conserved small polypeptide we designate "mycofactocin," similar in size to bacteriocins and PqqA, precursor of pyrroloquinoline quinone (PQQ). Partial Phylogenetic Profiling (PPP) based on the distribution of these markers identifies the mycofactocin cluster, but also a second tier of high-scoring proteins. This tier, strikingly, is filled with up to thirty-one members per genome from three variant subfamilies that occur, one each, in three unrelated classes of nicotinoproteins. The pattern suggests these variant enzymes require not only NAD(P), but also the novel gene cluster. Further study was conducted using SIMBAL, a PPP-like tool, to search these nicotinoproteins for subsequences best correlated across multiple genomes to the presence of mycofactocin. For both the short chain dehydrogenase/reductase (SDR) and iron-containing dehydrogenase families, aligning SIMBAL's top-scoring sequences to homologous solved crystal structures shows signals centered over NAD(P)-binding sites rather than over substrate-binding or active site residues. Previous studies on some of these proteins have revealed a non-exchangeable NAD cofactor, such that enzymatic activity in vitro requires an artificial electron acceptor such as N,N-dimethyl-4-nitrosoaniline (NDMA) for the enzyme to cycle.
Taken together, these findings suggest that the mycofactocin precursor is modified by the Rv0693 family rSAM protein and other enzymes in its cluster. It becomes an electron carrier molecule that serves in vivo as NDMA and other artificial electron acceptors do in vitro. Subclasses from three different nicotinoprotein families show "only-if" relationships to mycofactocin because they require its presence. This framework suggests a segregated redox pool in which mycofactocin mediates communication among enzymes with non-exchangeable cofactors.
PMCID: PMC3023750  PMID: 21223593
24.  Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family 
BMC Biology  2010;8:70.
A new family of natural products has been described in which cysteine, serine and threonine from ribosomally-produced peptides are converted to thiazoles, oxazoles and methyloxazoles, respectively. These metabolites and their biosynthetic gene clusters are now referred to as thiazole/oxazole-modified microcins (TOMM). As exemplified by microcin B17 and streptolysin S, TOMM precursors contain an N-terminal leader sequence and C-terminal core peptide. The leader sequence contains binding sites for the posttranslational modifying enzymes which subsequently act upon the core peptide. TOMM peptides are small and highly variable, frequently missed by gene-finders and occasionally situated far from the thiazole/oxazole forming genes. Thus, locating a substrate for a particular TOMM pathway can be a challenging endeavor.
Examination of candidate TOMM precursors has revealed a subclass with an uncharacteristically long leader sequence closely related to the enzyme nitrile hydratase. Members of this nitrile hydratase leader peptide (NHLP) family lack the metal-binding residues required for catalysis. Instead, NHLP sequences display the classic Gly-Gly cleavage motif and have C-terminal regions rich in heterocyclizable residues. The NHLP family exhibits a correlated species distribution and local clustering with an ABC transport system. This study also provides evidence that a separate family, annotated as Nif11 nitrogen-fixing proteins, can serve as natural product precursors (N11P), but not always of the TOMM variety. Indeed, a number of cyanobacterial genomes show extensive N11P paralogous expansion, such as Nostoc, Prochlorococcus and Cyanothece, which replace the TOMM cluster with lanthionine biosynthetic machinery.
This study has united numerous TOMM gene clusters with their cognate substrates. These results suggest that two large protein families, the nitrile hydratases and Nif11, have been retailored for secondary metabolism. Precursors for TOMMs and lanthionine-containing peptides derived from larger proteins to which other functions are attributed, may be widespread. The functions of these natural products have yet to be elucidated, but it is probable that some will display valuable industrial or medical activities.
PMCID: PMC2887384  PMID: 20500830
25.  Sites Inferred by Metabolic Background Assertion Labeling (SIMBAL): adapting the Partial Phylogenetic Profiling algorithm to scan sequences for signatures that predict protein function 
BMC Bioinformatics  2010;11:52.
Comparative genomics methods such as phylogenetic profiling can mine powerful inferences from inherently noisy biological data sets. We introduce Sites Inferred by Metabolic Background Assertion Labeling (SIMBAL), a method that applies the Partial Phylogenetic Profiling (PPP) approach locally within a protein sequence to discover short sequence signatures associated with functional sites. The approach is based on the basic scoring mechanism employed by PPP, namely the use of binomial distribution statistics to optimize sequence similarity cutoffs during searches of partitioned training sets.
Here we illustrate and validate the ability of the SIMBAL method to find functionally relevant short sequence signatures by application to two well-characterized protein families. In the first example, we partitioned a family of ABC permeases using a metabolic background property (urea utilization). Thus, the TRUE set for this family comprised members whose genome of origin encoded a urea utilization system. By moving a sliding window across the sequence of a permease, and searching each subsequence in turn against the full set of partitioned proteins, the method found which local sequence signatures best correlated with the urea utilization trait. Mapping of SIMBAL "hot spots" onto crystal structures of homologous permeases reveals that the significant sites are gating determinants on the cytosolic face rather than, say, docking sites for the substrate-binding protein on the extracellular face. In the second example, we partitioned a protein methyltransferase family using gene proximity as a criterion. In this case, the TRUE set comprised those methyltransferases encoded near the gene for the substrate RF-1. SIMBAL identifies sequence regions that map onto the substrate-binding interface while ignoring regions involved in the methyltransferase reaction mechanism in general. Neither method for training set construction requires any prior experimental characterization.
SIMBAL shows that, in functionally divergent protein families, selected short sequences often significantly outperform their full-length parent sequence for making functional predictions by sequence similarity, suggesting avenues for improved functional classifiers. When combined with structural data, SIMBAL affords the ability to localize and model functional sites.
PMCID: PMC3098086  PMID: 20102603

Results 1-25 (47)