PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  The PhyloFacts FAT-CAT web server: ortholog identification and function prediction using fast approximate tree classification 
Nucleic Acids Research  2013;41(Web Server issue):W242-W248.
The PhyloFacts ‘Fast Approximate Tree Classification’ (FAT-CAT) web server provides a novel approach to ortholog identification using subtree hidden Markov model-based placement of protein sequences to phylogenomic orthology groups in the PhyloFacts database. Results on a data set of microbial, plant and animal proteins demonstrate FAT-CAT’s high precision at separating orthologs and paralogs and robustness to promiscuous domains. We also present results documenting the precision of ortholog identification based on subtree hidden Markov model scoring. The FAT-CAT phylogenetic placement is used to derive a functional annotation for the query, including confidence scores and drill-down capabilities. PhyloFacts’ broad taxonomic and functional coverage, with >7.3 M proteins from across the Tree of Life, enables FAT-CAT to predict orthologs and assign function for most sequence inputs. Four pipeline parameter presets are provided to handle different sequence types, including partial sequences and proteins containing promiscuous domains; users can also modify individual parameters. PhyloFacts trees matching the query can be viewed interactively online using the PhyloScope Javascript tree viewer and are hyperlinked to various external databases. The FAT-CAT web server is available at http://phylogenomics.berkeley.edu/phylofacts/fatcat/.
doi:10.1093/nar/gkt399
PMCID: PMC3692063  PMID: 23685612
2.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega 
Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
Multiple sequence alignments are fundamental to many sequence analysis methods. The new program Clustal Omega can align virtually any number of protein sequences quickly and has powerful features for adding sequences to existing precomputed alignments.
Multiple sequence alignments are fundamental to many sequence analysis methods. Most alignments are computed using the progressive alignment heuristic. These methods are starting to become a bottleneck in some analysis pipelines when faced with data sets of the size of many thousands of sequences. Some methods allow computation of larger data sets while sacrificing quality, and others produce high-quality alignments, but scale badly with the number of sequences. In this paper, we describe a new program called Clustal Omega, which can align virtually any number of protein sequences quickly and that delivers accurate alignments. The accuracy of the package on smaller test cases is similar to that of the high-quality aligners. On larger data sets, Clustal Omega outperforms other packages in terms of execution time and quality. Clustal Omega also has powerful features for adding sequences to and exploiting information in existing alignments, making use of the vast amount of precomputed information in public databases like Pfam.
doi:10.1038/msb.2011.75
PMCID: PMC3261699  PMID: 21988835
bioinformatics; hidden Markov models; multiple sequence alignment
3.  Ensemble approach combining multiple methods improves human transcription start site prediction 
BMC Genomics  2010;11:677.
Background
The computational prediction of transcription start sites is an important unsolved problem. Some recent progress has been made, but many promoters, particularly those not associated with CpG islands, are still difficult to locate using current methods. These methods use different features and training sets, along with a variety of machine learning techniques and result in different prediction sets.
Results
We demonstrate the heterogeneity of current prediction sets, and take advantage of this heterogeneity to construct a two-level classifier ('Profisi Ensemble') using predictions from 7 programs, along with 2 other data sources. Support vector machines using 'full' and 'reduced' data sets are combined in an either/or approach. We achieve a 14% increase in performance over the current state-of-the-art, as benchmarked by a third-party tool.
Conclusions
Supervised learning methods are a useful way to combine predictions from diverse sources.
doi:10.1186/1471-2164-11-677
PMCID: PMC3053590  PMID: 21118509
4.  High DNA melting temperature predicts transcription start site location in human and mouse 
Nucleic Acids Research  2009;37(22):7360-7367.
The accurate computational prediction of transcription start sites (TSS) in vertebrate genomes is a difficult problem. The physicochemical properties of DNA can be computed in various ways and a many combinations of DNA features have been tested in the past for use as predictors of transcription. We looked in detail at melting temperature, which measures the temperature, at which two strands of DNA separate, considering the cooperative nature of this process. We find that peaks in melting temperature correspond closely to experimentally determined transcription start sites in human and mouse chromosomes. Using melting temperature alone, and with simple thresholding, we can predict TSS with accuracy that is competitive with the most accurate state-of-the-art TSS prediction methods. Accuracy is measured using both experimentally and manually determined TSS. The method works especially well with CpG island containing promoters, but also works when CpG islands are absent. This result is clear evidence of the important role of the physical properties of DNA in the process of transcription. It also points to the importance for TSS prediction methods to include melting temperature as prior information.
doi:10.1093/nar/gkp821
PMCID: PMC2794178  PMID: 19820114

Results 1-4 (4)