PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
2.  Genetic Disruption of KEAP1/CUL3 E3 Ubiquitin Ligase Complex Components is a Key Mechanism of NF-kappaB Pathway Activation in Lung Cancer 
Introduction
IKBKB (IKK-β/IKK-2), which activates NF-κB, is a substrate of the KEAP1-CUL3-RBX1 E3-ubiquitin ligase complex, implicating this complex in regulation of NF-κB signaling. We investigated complex component gene disruption as a novel genetic mechanism of NF-κB activation in non-small cell lung cancer (NSCLC).
Methods
644 tumor- and 90 cell line-genomes were analyzed for gene-dosage status of the individual complex components and IKBKB. Gene expression of these genes, and NF-κB target genes were analyzed in 48 tumors. IKBKB protein levels were assessed in tumors with and without complex or IKBKB genetic disruption. Complex component knockdown was performed to assess effects of the E3-ligase complex on IKBKB and NF-κB levels, and phenotypic importance of IKBKB expression was measured by pharmacological inhibition.
Results
We observed strikingly frequent genetic disruption (42%) and aberrant expression (63%) of the E3-ligase complex and IKBKB in the samples examined. While both adenocarcinomas and squamous cell carcinomas showed complex disruption, the patterns of gene disruption differed. IKBKB levels were elevated with complex disruption, knockdown of complex components increased activated forms of IKBKB and NF-κB proteins, and IKBKB inhibition detriments cell viability, highlighting the biological significance of complex disruption. NF-κB target genes were overexpressed in samples with complex disruption, further demonstrating the effect of complex disruption on NF-κB activity.
Conclusions
Gene dosage alteration is a prominent mechanism that disrupts each component of the KEAP1-CUL3-RBX1 complex and its NF-κB stimulating substrate, IKBKB. Here we show that, multiple component disruption of this complex represents a novel mechanism of NF-κB activation in NSCLC.
doi:10.1097/JTO.0b013e3182289479
PMCID: PMC3164321  PMID: 21795997
KEAP1; CUL3; RBX1; IKBKB; NF-κB signaling; genetic disruption
3.  Canadian Optically-guided approach for Oral Lesions Surgical (COOLS) trial: study protocol for a randomized controlled trial 
BMC Cancer  2011;11:462.
Background
Oral cancer is a major health problem worldwide. The 5-year survival rate ranges from 30-60%, and has remained unchanged in the past few decades. This is mainly due to late diagnosis and high recurrence of the disease. Of the patients who receive treatment, up to one third suffer from a recurrence or a second primary tumor. It is apparent that one major cause of disease recurrence is clinically unrecognized field changes which extend beyond the visible tumor boundary. We have previously developed an approach using fluorescence visualization (FV) technology to improve the recognition of the field at risk surrounding a visible oral cancer that needs to be removed and preliminary results have shown a significant reduction in recurrence rates.
Method/Design
This paper describes the study design of a randomized, multi-centre, double blind, controlled surgical trial, the COOLS trial. Nine institutions across Canada will recruit a total of 400 patients with oral severe dysplasia or carcinoma in situ (N = 160) and invasive squamous cell carcinoma (N = 240). Patients will be stratified by participating institution and histology grade and randomized equally into FV-guided surgery (experimental arm) or white light-guided surgery (control arm). The primary endpoint is a composite of recurrence at or 1 cm within the previous surgery site with 1) the same or higher grade histology compared to the initial diagnosis (i.e., the diagnosis used for randomization); or 2) further treatment due to the presence of severe dysplasia or higher degree of change at follow-up. This is the first randomized, multi-centre trial to validate the effectiveness of the FV-guided surgery.
Discussion
In this paper we described the strategies, novelty, and challenges of this unique trial involving a surgical approach guided by the FV technology. The success of the trial requires training, coordination, and quality assurance across multiple sites within Canada. The COOLS trial, an example of translational research, may result in reduced recurrence rates following surgical treatment of early-stage oral cancer with significant impacts on survival, morbidity, patients' quality of life and the cost to the health care system.
Trial Registration
Clinicaltrials.gov NCT01039298
doi:10.1186/1471-2407-11-462
PMCID: PMC3226575  PMID: 22026481
4.  A sequence-based approach to identify reference genes for gene expression analysis 
BMC Medical Genomics  2010;3:32.
Background
An important consideration when analyzing both microarray and quantitative PCR expression data is the selection of appropriate genes as endogenous controls or reference genes. This step is especially critical when identifying genes differentially expressed between datasets. Moreover, reference genes suitable in one context (e.g. lung cancer) may not be suitable in another (e.g. breast cancer). Currently, the main approach to identify reference genes involves the mining of expression microarray data for highly expressed and relatively constant transcripts across a sample set. A caveat here is the requirement for transcript normalization prior to analysis, and measurements obtained are relative, not absolute. Alternatively, as sequencing-based technologies provide digital quantitative output, absolute quantification ensues, and reference gene identification becomes more accurate.
Methods
Serial analysis of gene expression (SAGE) profiles of non-malignant and malignant lung samples were compared using a permutation test to identify the most stably expressed genes across all samples. Subsequently, the specificity of the reference genes was evaluated across multiple tissue types, their constancy of expression was assessed using quantitative RT-PCR (qPCR), and their impact on differential expression analysis of microarray data was evaluated.
Results
We show that (i) conventional references genes such as ACTB and GAPDH are highly variable between cancerous and non-cancerous samples, (ii) reference genes identified for lung cancer do not perform well for other cancer types (breast and brain), (iii) reference genes identified through SAGE show low variability using qPCR in a different cohort of samples, and (iv) normalization of a lung cancer gene expression microarray dataset with or without our reference genes, yields different results for differential gene expression and subsequent analyses. Specifically, key established pathways in lung cancer exhibit higher statistical significance using a dataset normalized with our reference genes relative to normalization without using our reference genes.
Conclusions
Our analyses found NDUFA1, RPL19, RAB5C, and RPS18 to occupy the top ranking positions among 15 suitable reference genes optimal for normalization of lung tissue expression data. Significantly, the approach used in this study can be applied to data generated using new generation sequencing platforms for the identification of reference genes optimal within diverse contexts.
doi:10.1186/1755-8794-3-32
PMCID: PMC2928167  PMID: 20682026
6.  Integrating the multiple dimensions of genomic and epigenomic landscapes of cancer 
Cancer metastasis reviews  2010;29(1):73-93.
Advances in high-throughput, genome-wide profiling technologies have allowed for an unprecedented view of the cancer genome landscape. Specifically, high-density microarrays and sequencing-based strategies have been widely utilized to identify genetic (such as gene dosage, allelic status, and mutations in gene sequence) and epigenetic (such as DNA methylation, histone modification, and micro-RNA) aberrations in cancer. Although the application of these profiling technologies in unidimensional analyses has been instrumental in cancer gene discovery, genes affected by low-frequency events are often overlooked. The integrative approach of analyzing parallel dimensions has enabled the identification of (a) genes that are often disrupted by multiple mechanisms but at low frequencies by any one mechanism and (b) pathways that are often disrupted at multiple components but at low frequencies at individual components. These benefits of using an integrative approach illustrate the concept that the whole is greater than the sum of its parts. As efforts have now turned toward parallel and integrative multidimensional approaches for studying the cancer genome landscape in hopes of obtaining a more insightful understanding of the key genes and pathways driving cancer cells, this review describes key findings disseminating from such high-throughput, integrative analyses, including contributions to our understanding of causative genetic events in cancer cell biology.
doi:10.1007/s10555-010-9199-2
PMCID: PMC3415277  PMID: 20108112
Integrative analysis; Cancer genome; Sequencing; Microarray
7.  Divergent Genomic and Epigenomic Landscapes of Lung Cancer Subtypes Underscore the Selection of Different Oncogenic Pathways during Tumor Development 
PLoS ONE  2012;7(5):e37775.
For therapeutic purposes, non-small cell lung cancer (NSCLC) has traditionally been regarded as a single disease. However, recent evidence suggest that the two major subtypes of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SqCC) respond differently to both molecular targeted and new generation chemotherapies. Therefore, identifying the molecular differences between these tumor types may impact novel treatment strategy. We performed the first large-scale analysis of 261 primary NSCLC tumors (169 AC and 92 SqCC), integrating genome-wide DNA copy number, methylation and gene expression profiles to identify subtype-specific molecular alterations relevant to new agent design and choice of therapy. Comparison of AC and SqCC genomic and epigenomic landscapes revealed 778 altered genes with corresponding expression changes that are selected during tumor development in a subtype-specific manner. Analysis of >200 additional NSCLCs confirmed that these genes are responsible for driving the differential development and resulting phenotypes of AC and SqCC. Importantly, we identified key oncogenic pathways disrupted in each subtype that likely serve as the basis for their differential tumor biology and clinical outcomes. Downregulation of HNF4α target genes was the most common pathway specific to AC, while SqCC demonstrated disruption of numerous histone modifying enzymes as well as the transcription factor E2F1. In silico screening of candidate therapeutic compounds using subtype-specific pathway components identified HDAC and PI3K inhibitors as potential treatments tailored to lung SqCC. Together, our findings suggest that AC and SqCC develop through distinct pathogenetic pathways that have significant implication in our approach to the clinical management of NSCLC.
doi:10.1371/journal.pone.0037775
PMCID: PMC3357406  PMID: 22629454
8.  Lung Adenocarcinoma of Never Smokers and Smokers Harbor Differential Regions of Genetic Alteration and Exhibit Different Levels of Genomic Instability 
PLoS ONE  2012;7(3):e33003.
Recent evidence suggests that the observed clinical distinctions between lung tumors in smokers and never smokers (NS) extend beyond specific gene mutations, such as EGFR, EML4-ALK, and KRAS, some of which have been translated into targeted therapies. However, the molecular alterations identified thus far cannot explain all of the clinical and biological disparities observed in lung tumors of NS and smokers. To this end, we performed an unbiased genome-wide, comparative study to identify novel genomic aberrations that differ between smokers and NS.
High resolution whole genome DNA copy number profiling of 69 lung adenocarcinomas from smokers (n = 39) and NS (n = 30) revealed both global and regional disparities in the tumor genomes of these two groups. We found that NS lung tumors had a greater proportion of their genomes altered than those of smokers. Moreover, copy number gains on chromosomes 5q, 7p, and 16p occurred more frequently in NS. We validated our findings in two independently generated public datasets. Our findings provide a novel line of evidence distinguishing genetic differences between smoker and NS lung tumors, namely, that the extent of segmental genomic alterations is greater in NS tumors. Collectively, our findings provide evidence that these lung tumors are globally and genetically different, which implies they are likely driven by distinct molecular mechanisms.
doi:10.1371/journal.pone.0033003
PMCID: PMC3296775  PMID: 22412972
9.  Human Cancer Long Non-Coding RNA Transcriptomes 
PLoS ONE  2011;6(10):e25915.
Once thought to be a part of the ‘dark matter’ of the genome, long non-coding RNAs (lncRNAs) are emerging as an integral functional component of the mammalian transcriptome. LncRNAs are a novel class of mRNA-like transcripts which, despite no known protein-coding potential, demonstrate a wide range of structural and functional roles in cellular biology. However, the magnitude of the contribution of lncRNA expression to normal human tissues and cancers has not been investigated in a comprehensive manner. In this study, we compiled 272 human serial analysis of gene expression (SAGE) libraries to delineate lncRNA transcription patterns across a broad spectrum of normal human tissues and cancers. Using a novel lncRNA discovery pipeline we parsed over 24 million SAGE tags and report lncRNA expression profiles across a panel of 26 different normal human tissues and 19 human cancers. Our findings show extensive, tissue-specific lncRNA expression in normal tissues and highly aberrant lncRNA expression in human cancers. Here, we present a first generation atlas for lncRNA profiling in cancer.
doi:10.1371/journal.pone.0025915
PMCID: PMC3185064  PMID: 21991387

Results 1-9 (9)