PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (32)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Numerical investigation of two-dimensional light scattering patterns of cervical cell nuclei to map dysplastic changes at different epithelial depths 
Biomedical Optics Express  2014;5(2):485-498.
We use an extensive set of quantitative histopathology data to construct realistic three-dimensional models of normal and dysplastic cervical cell nuclei at different epithelial depths. We then employ the finite-difference time-domain method to numerically simulate the light scattering response of these representative models as a function of the polar and azimuthal scattering angles. The results indicate that intensity and shape metrics computed from two-dimensional scattering patterns can be used to distinguish between different diagnostic categories. Our numerical study also suggests that different epithelial layers and angular ranges need to be considered separately to fully exploit the diagnostic potential of two-dimensional light scattering measurements.
doi:10.1364/BOE.5.000485
PMCID: PMC3920879  PMID: 24575343
(170.0170) Medical optics and biotechnology; (170.1530) Cell analysis; (170.4580) Optical diagnostics for medicine; (170.4730) Optical pathology; (290.0290) Scattering
2.  Double Staining Cytologic Samples with Quantitative Feulgen-Thionin and Anti–Ki-67 Immunocytochemistry as a Method of Distinguishing Cells with Abnormal DNA Content from Normal Cycling Cells 
Objective
Ploidy analysis of Feulgen-thionin stained cervical cytology specimens has been shown to detect cases of high grade cervical dysplasia. However, ploidy analysis alone cannot always distinguish between cells with abnormal DNA content and normal cycling cells. We sought to use double staining with anti-Ki-67 immunocytochemistry to improve ploidy analysis.
Study Design
Cervical cytology specimens from 49 patients with various diagnoses, mostly dysplasias, from a previous study were used. Samples were double stained with Feulgen-thionin and anti-Ki-67 immunocytochemistry. Ki-67-negative cells were non-cycling, so non-diploid Ki-67-negative cells were likely truly abnormal cells.
Results
The area under the receiver operating characteristic curve for the ability to identify high-grade dysplasias was 0.73 for double staining and 0.74 for thionin-only ploidy analysis on cytospin specimens. At 90% specificity, sensitivities for double staining and thionin alone were 45% and 32%, respectively, but the difference was not statistically significant.
Conclusion
Double staining with Feulgen-thionin and anti-Ki-67 immunocytochemistry does not improve the ability of ploidy analysis of cervical cytology specimens to separate high- and low-grade dysplasias, but our insights into the technical aspects of double staining, especially the effects of antigen retrieval, give hope that this technique could be applied to other immunocytochemical stains that would have a greater ability to improve ploidy analysis.
PMCID: PMC3573880  PMID: 23301387
Ploidy; Early cancer detection; Cervical cancer; Quantitative image cytometry; Proliferation; Immunocytochemistry; Heat-mediated antigen retrieval
3.  Optical Technologies and Molecular Imaging for Cervical Neoplasia: A Program Project Update 
Gender Medicine  2011;9(1 Suppl):S7-S24.
There is an urgent global need for effective and affordable approaches to cervical cancer screening and diagnosis. For developing nations, cervical malignancies remain the leading cause of cancer death in women. This reality is difficult to accept given that these deaths are largely preventable; where cervical screening programs are implemented, cervical cancer deaths decrease dramatically. In the developed world, the challenges with respect to cervical disease stem from high costs and over-treatment. We are presently eleven years into a National Cancer Institute-funded Program Project (P01 CA82710) that is evaluating optical technologies for their applicability to the cervical cancer problem. Our mandate is to create new tools for disease detection and diagnosis that are inexpensive, require minimal expertise to use, are more accurate than existing modalities, and will be feasibly implemented in a variety of clinical settings. Herein, we update the status of this work and explain the long-term goals of this project.
doi:10.1016/j.genm.2011.08.002
PMCID: PMC3289763  PMID: 21944317
4.  Physician attitudes toward dissemination of optical spectroscopy devices for cervical cancer control: An Industrial-Academic collaborative study 
Gender Medicine  2012;9(1 Suppl):S67-S77.e6.
Introduction
Optical Spectroscopy has been studied for biologic plausisbility, technical efficacy, clinical effectiveness, patient satisfaction and cost-effectiveness. We sought to identify healthcare provider attitudes or practices that might act as barriers or to the dissemination of this new technology.
Methods
Through an academic-industrial partnership, we conducted a series of focus groups to examine physician barriers to optical diagnosis. The study was conducted in two stages. First, a pilot group of ten physicians (8 obstetrician gynecologists and two family practitioners) was randomly selected from 8 regions of the US and interviewed individually. They were presented with the results of a large trial (N=980) testing the accuracy of a spectroscopy based device in the detection of cervical neoplasia. They were also shown a prototype of the device and were given a period of time to ask questions and receive answers regarding the device. They were also asked to provide feedback of a questionnaire (provided in Appendix A) which was then revised and presented to three larger focus groups (n=13, 15, 17 for a total n=45). The larger focus groups were conducted during national scientific meetings with 20 obstetrician gynecologists and 25 primary care physicians (family practitioners and internists).
Results
When asked about the dissemination potential of the new cervical screening technology, all study groups tended to rely on established clinical guidelines from their respective professional societies with regard to the screening and diagnosis of cervical cancer. In addition, study participants consistently agreed that real-time spectroscopy would be viewed positively by their patients. Participants were positive about the new technology's potential as an adjunct to colposcopy and agreed that the improved accuracy would result in reduced healthcare costs (due to decreased biopsies and decreased visits). However, while all saw the potential of real-time diagnosis, there were many perceived barriers. These barriers included: changes in scheduling and work-flow, liability, documentation, ease of use, length of training, device cost, and reimbursement by third party payers.
Conclusion
Barriers exist to the dissemination of optical technologies into physician practice. These will need to be addressed before cervical screening and diagnosis programs can take advantage of spectroscopy-based instruments for cancer control.
doi:10.1016/j.genm.2011.11.004
PMCID: PMC3292768  PMID: 22340642
physician attitude; physician satisfaction; dissemination; cervical intraepithelial neoplasia; fluorescence and reflectance spectroscopy; optical spectroscopy
5.  Genetic Disruption of KEAP1/CUL3 E3 Ubiquitin Ligase Complex Components is a Key Mechanism of NF-kappaB Pathway Activation in Lung Cancer 
Introduction
IKBKB (IKK-β/IKK-2), which activates NF-κB, is a substrate of the KEAP1-CUL3-RBX1 E3-ubiquitin ligase complex, implicating this complex in regulation of NF-κB signaling. We investigated complex component gene disruption as a novel genetic mechanism of NF-κB activation in non-small cell lung cancer (NSCLC).
Methods
644 tumor- and 90 cell line-genomes were analyzed for gene-dosage status of the individual complex components and IKBKB. Gene expression of these genes, and NF-κB target genes were analyzed in 48 tumors. IKBKB protein levels were assessed in tumors with and without complex or IKBKB genetic disruption. Complex component knockdown was performed to assess effects of the E3-ligase complex on IKBKB and NF-κB levels, and phenotypic importance of IKBKB expression was measured by pharmacological inhibition.
Results
We observed strikingly frequent genetic disruption (42%) and aberrant expression (63%) of the E3-ligase complex and IKBKB in the samples examined. While both adenocarcinomas and squamous cell carcinomas showed complex disruption, the patterns of gene disruption differed. IKBKB levels were elevated with complex disruption, knockdown of complex components increased activated forms of IKBKB and NF-κB proteins, and IKBKB inhibition detriments cell viability, highlighting the biological significance of complex disruption. NF-κB target genes were overexpressed in samples with complex disruption, further demonstrating the effect of complex disruption on NF-κB activity.
Conclusions
Gene dosage alteration is a prominent mechanism that disrupts each component of the KEAP1-CUL3-RBX1 complex and its NF-κB stimulating substrate, IKBKB. Here we show that, multiple component disruption of this complex represents a novel mechanism of NF-κB activation in NSCLC.
doi:10.1097/JTO.0b013e3182289479
PMCID: PMC3164321  PMID: 21795997
KEAP1; CUL3; RBX1; IKBKB; NF-κB signaling; genetic disruption
6.  Natural history of bronchial preinvasive lesions 
Cancer metastasis reviews  2010;29(1):5-14.
Preinvasive bronchial lesions defined as dysplasia and carcinoma in situ (CIS) have been considered as precursors of squamous cell carcinoma of the lung. The risk and rate of progression of preinvasive lesions to invasive squamous cell carcinoma as well as the mechanism of progression or regression are incompletely understood. While the evidence for the multistage, stepwise progression model is weak with relatively few documented lesions that progress through various grades of dysplasia to CIS and then to invasive carcinoma, the concept of field carcinogenesis is strongly supported. The presence of high-grade dysplasia or CIS is a risk marker for lung cancer both in the central airways and peripheral lung. Genetic alterations such as loss of heterozygosity in chromosome 3p or chromosomal aneusomy as well as host factors such as the inflammatory load and levels of anti-inflammatory proteins in the lung influence the progression or regression of preinvasive lesions. CIS is different than severe dysplasia at the molecular level and has different clinical outcome. Molecular analysis of dysplastic lesions that progress to CIS or invasive cancer and rare lesions that progress rapidly from hyperplasia or metaplasia to CIS or invasive cancer will shed light on the key molecular determinants driving development to an invasive phenotype versus those associated with tobacco smoke damage.
doi:10.1007/s10555-010-9214-7
PMCID: PMC3417071  PMID: 20112052
Preinvasive lesions; Natural history; Lung cancer
7.  Integrating the multiple dimensions of genomic and epigenomic landscapes of cancer 
Cancer metastasis reviews  2010;29(1):73-93.
Advances in high-throughput, genome-wide profiling technologies have allowed for an unprecedented view of the cancer genome landscape. Specifically, high-density microarrays and sequencing-based strategies have been widely utilized to identify genetic (such as gene dosage, allelic status, and mutations in gene sequence) and epigenetic (such as DNA methylation, histone modification, and micro-RNA) aberrations in cancer. Although the application of these profiling technologies in unidimensional analyses has been instrumental in cancer gene discovery, genes affected by low-frequency events are often overlooked. The integrative approach of analyzing parallel dimensions has enabled the identification of (a) genes that are often disrupted by multiple mechanisms but at low frequencies by any one mechanism and (b) pathways that are often disrupted at multiple components but at low frequencies at individual components. These benefits of using an integrative approach illustrate the concept that the whole is greater than the sum of its parts. As efforts have now turned toward parallel and integrative multidimensional approaches for studying the cancer genome landscape in hopes of obtaining a more insightful understanding of the key genes and pathways driving cancer cells, this review describes key findings disseminating from such high-throughput, integrative analyses, including contributions to our understanding of causative genetic events in cancer cell biology.
doi:10.1007/s10555-010-9199-2
PMCID: PMC3415277  PMID: 20108112
Integrative analysis; Cancer genome; Sequencing; Microarray
8.  Automated sputum cytometry for detection of intraepithelial neoplasias in the lung 
Background
Despite the benefits of early lung cancer detection, no effective strategy for early screening and treatment exists, partly due to a lack of effective surrogate biomarkers. Our novel sputum biomarker, the Combined Score (CS), uses automated image cytometric analysis of ploidy and nuclear morphology to detect subtle intraepithelial changes that often precede lung tumours.
Methods
2249 sputum samples from 1795 high-risk patients enrolled in ongoing chemoprevention trials were subjected to automated quantitative image cytometry after Feulgenthionin staining. Samples from normal histopathology patients were compared against samples from carcinoma in situ (CIS) and cancer patients to train the CS.
Results
CS correlates with several lung cancer risk factors, including histopathological grade, age, smoking status, and p53 and Ki67 immunostaining. At 50% specificity, CS detected 78% of all highest-risk subjects—those with CIS or worse plus those with moderate or severe dysplasia and abnormal nuclear morphology.
Conclusion
CS is a powerful yet minimally invasive tool for rapid and inexpensive risk assessment for the presence of precancerous lung lesions, enabling enrichment of chemoprevention trials with highest-risk dysplasias. CS correlates with other biomarkers, so CS may find use as a surrogate biomarker for patient assessment and as an endpoint in chemoprevention clinical trials.
doi:10.3233/ACP-2012-0053
PMCID: PMC3412676  PMID: 22277916
Intraepithelial neoplasia (IEN); lung cancer; risk assessment; intermediate or pre-neoplastic markers and risk factors; biomarkers and intervention studies; chemoprevention; biomarkers and intervention; cancer surveillance and screening; chemoprevention clinical trials; quantitative image cytometry; ploidy analysis; malignancy associated changes
9.  Divergent Genomic and Epigenomic Landscapes of Lung Cancer Subtypes Underscore the Selection of Different Oncogenic Pathways during Tumor Development 
PLoS ONE  2012;7(5):e37775.
For therapeutic purposes, non-small cell lung cancer (NSCLC) has traditionally been regarded as a single disease. However, recent evidence suggest that the two major subtypes of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SqCC) respond differently to both molecular targeted and new generation chemotherapies. Therefore, identifying the molecular differences between these tumor types may impact novel treatment strategy. We performed the first large-scale analysis of 261 primary NSCLC tumors (169 AC and 92 SqCC), integrating genome-wide DNA copy number, methylation and gene expression profiles to identify subtype-specific molecular alterations relevant to new agent design and choice of therapy. Comparison of AC and SqCC genomic and epigenomic landscapes revealed 778 altered genes with corresponding expression changes that are selected during tumor development in a subtype-specific manner. Analysis of >200 additional NSCLCs confirmed that these genes are responsible for driving the differential development and resulting phenotypes of AC and SqCC. Importantly, we identified key oncogenic pathways disrupted in each subtype that likely serve as the basis for their differential tumor biology and clinical outcomes. Downregulation of HNF4α target genes was the most common pathway specific to AC, while SqCC demonstrated disruption of numerous histone modifying enzymes as well as the transcription factor E2F1. In silico screening of candidate therapeutic compounds using subtype-specific pathway components identified HDAC and PI3K inhibitors as potential treatments tailored to lung SqCC. Together, our findings suggest that AC and SqCC develop through distinct pathogenetic pathways that have significant implication in our approach to the clinical management of NSCLC.
doi:10.1371/journal.pone.0037775
PMCID: PMC3357406  PMID: 22629454
10.  Lung Adenocarcinoma of Never Smokers and Smokers Harbor Differential Regions of Genetic Alteration and Exhibit Different Levels of Genomic Instability 
PLoS ONE  2012;7(3):e33003.
Recent evidence suggests that the observed clinical distinctions between lung tumors in smokers and never smokers (NS) extend beyond specific gene mutations, such as EGFR, EML4-ALK, and KRAS, some of which have been translated into targeted therapies. However, the molecular alterations identified thus far cannot explain all of the clinical and biological disparities observed in lung tumors of NS and smokers. To this end, we performed an unbiased genome-wide, comparative study to identify novel genomic aberrations that differ between smokers and NS.
High resolution whole genome DNA copy number profiling of 69 lung adenocarcinomas from smokers (n = 39) and NS (n = 30) revealed both global and regional disparities in the tumor genomes of these two groups. We found that NS lung tumors had a greater proportion of their genomes altered than those of smokers. Moreover, copy number gains on chromosomes 5q, 7p, and 16p occurred more frequently in NS. We validated our findings in two independently generated public datasets. Our findings provide a novel line of evidence distinguishing genetic differences between smoker and NS lung tumors, namely, that the extent of segmental genomic alterations is greater in NS tumors. Collectively, our findings provide evidence that these lung tumors are globally and genetically different, which implies they are likely driven by distinct molecular mechanisms.
doi:10.1371/journal.pone.0033003
PMCID: PMC3296775  PMID: 22412972
11.  Accuracy of optical spectroscopy for the detection of cervical intraepithelial neoplasia: testing a device as an adjunct to colposcopy 
Testing emerging technologies involves the evaluation of biologic plausibility, technical efficacy, clinical effectiveness, patient satisfaction, and cost-effectiveness. The objective of this study was to select an effective classification algorithm for optical spectroscopy as an adjunct to colposcopy and obtain preliminary estimates of its accuracy for the detection of CIN 2 or worse. We recruited 1000 patients from screening and prevention clinics and 850 patients from colposcopy clinics at two comprehensive cancer centers and a community hospital. Optical spectroscopy was performed and 4864 biopsies were obtained from the sites measured, including abnormal and normal colposcopic areas. The gold standard was the histologic report of biopsies, read 2–3 times by histopathologists blinded to the cytologic, histopathologic, and spectroscopic results. We calculated sensitivities, specificities, receiver operating characteristic (ROC) curves, and areas under the ROC curves. We identified a cutpoint for an algorithm based on optical spectroscopy that yielded an estimated sensitivity of 1.00 [95% confidence interval (CI) = 0.92 – 1.00] and an estimated specificity of 0.71 [95% CI = 0.62 – 0.79] in a combined screening and diagnostic population. The positive and negative predictive values were 0.58 and 1.00, respectively. The area under the ROC curve was 0.85 (95% CI 0.81 – 0.89). The per-patient and per-site performance were similar in the diagnostic and poorer in the screening settings. Like colposcopy, the device performs best in a diagnostic population. Alternative statistical approaches demonstrate that the analysis is robust and that spectroscopy works as well as or slightly better than colposcopy for the detection of CIN 2 to cancer.
doi:10.1002/ijc.25667
PMCID: PMC3015005  PMID: 20830707
sensitivity and specificity; diagnosis; early detection of cancer; uterine cervical neoplasms; cervical intraepithelial neoplasia
12.  A sequence-based approach to identify reference genes for gene expression analysis 
BMC Medical Genomics  2010;3:32.
Background
An important consideration when analyzing both microarray and quantitative PCR expression data is the selection of appropriate genes as endogenous controls or reference genes. This step is especially critical when identifying genes differentially expressed between datasets. Moreover, reference genes suitable in one context (e.g. lung cancer) may not be suitable in another (e.g. breast cancer). Currently, the main approach to identify reference genes involves the mining of expression microarray data for highly expressed and relatively constant transcripts across a sample set. A caveat here is the requirement for transcript normalization prior to analysis, and measurements obtained are relative, not absolute. Alternatively, as sequencing-based technologies provide digital quantitative output, absolute quantification ensues, and reference gene identification becomes more accurate.
Methods
Serial analysis of gene expression (SAGE) profiles of non-malignant and malignant lung samples were compared using a permutation test to identify the most stably expressed genes across all samples. Subsequently, the specificity of the reference genes was evaluated across multiple tissue types, their constancy of expression was assessed using quantitative RT-PCR (qPCR), and their impact on differential expression analysis of microarray data was evaluated.
Results
We show that (i) conventional references genes such as ACTB and GAPDH are highly variable between cancerous and non-cancerous samples, (ii) reference genes identified for lung cancer do not perform well for other cancer types (breast and brain), (iii) reference genes identified through SAGE show low variability using qPCR in a different cohort of samples, and (iv) normalization of a lung cancer gene expression microarray dataset with or without our reference genes, yields different results for differential gene expression and subsequent analyses. Specifically, key established pathways in lung cancer exhibit higher statistical significance using a dataset normalized with our reference genes relative to normalization without using our reference genes.
Conclusions
Our analyses found NDUFA1, RPL19, RAB5C, and RPS18 to occupy the top ranking positions among 15 suitable reference genes optimal for normalization of lung tissue expression data. Significantly, the approach used in this study can be applied to data generated using new generation sequencing platforms for the identification of reference genes optimal within diverse contexts.
doi:10.1186/1755-8794-3-32
PMCID: PMC2928167  PMID: 20682026
13.  Integrative Genomic Analyses Identify BRF2 as a Novel Lineage-Specific Oncogene in Lung Squamous Cell Carcinoma 
PLoS Medicine  2010;7(7):e1000315.
William Lockwood and colleagues show that the focal amplification of a gene, BRF2, on Chromosome 8p12 plays a key role in squamous cell carcinoma of the lung.
Background
Traditionally, non-small cell lung cancer is treated as a single disease entity in terms of systemic therapy. Emerging evidence suggests the major subtypes—adenocarcinoma (AC) and squamous cell carcinoma (SqCC)—respond differently to therapy. Identification of the molecular differences between these tumor types will have a significant impact in designing novel therapies that can improve the treatment outcome.
Methods and Findings
We used an integrative genomics approach, combing high-resolution comparative genomic hybridization and gene expression microarray profiles, to compare AC and SqCC tumors in order to uncover alterations at the DNA level, with corresponding gene transcription changes, which are selected for during development of lung cancer subtypes. Through the analysis of multiple independent cohorts of clinical tumor samples (>330), normal lung tissues and bronchial epithelial cells obtained by bronchial brushing in smokers without lung cancer, we identified the overexpression of BRF2, a gene on Chromosome 8p12, which is specific for development of SqCC of lung. Genetic activation of BRF2, which encodes a RNA polymerase III (Pol III) transcription initiation factor, was found to be associated with increased expression of small nuclear RNAs (snRNAs) that are involved in processes essential for cell growth, such as RNA splicing. Ectopic expression of BRF2 in human bronchial epithelial cells induced a transformed phenotype and demonstrates downstream oncogenic effects, whereas RNA interference (RNAi)-mediated knockdown suppressed growth and colony formation of SqCC cells overexpressing BRF2, but not AC cells. Frequent activation of BRF2 in >35% preinvasive bronchial carcinoma in situ, as well as in dysplastic lesions, provides evidence that BRF2 expression is an early event in cancer development of this cell lineage.
Conclusions
This is the first study, to our knowledge, to show that the focal amplification of a gene in Chromosome 8p12, plays a key role in squamous cell lineage specificity of the disease. Our data suggest that genetic activation of BRF2 represents a unique mechanism of SqCC lung tumorigenesis through the increase of Pol III-mediated transcription. It can serve as a marker for lung SqCC and may provide a novel target for therapy.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Lung cancer is the commonest cause of cancer-related death. Every year, 1.3 million people die from this disease, which is mainly caused by smoking. Most cases of lung cancer are “non-small cell lung cancers” (NSCLCs). Like all cancers, NSCLC starts when cells begin to divide uncontrollably and to move round the body (metastasize) because of changes (mutations) in their genes. These mutations are often in “oncogenes,” genes that, when activated, encourage cell division. Oncogenes can be activated by mutations that alter the properties of the proteins they encode or by mutations that increase the amount of protein made from them, such as gene amplification (an increase in the number of copies of a gene). If NSCLC is diagnosed before it has spread from the lungs (stage I disease), it can be surgically removed and many patients with stage I NSCLC survive for more than 5 years after their diagnosis. Unfortunately, in more than half of patients, NSCLC has metastasized before it is diagnosed. This stage IV NSCLC can be treated with chemotherapy (toxic chemicals that kill fast-growing cancer cells) but only 2% of patients with stage IV lung cancer are alive 5 years after diagnosis.
Why Was This Study Done?
Traditionally, NSCLC has been regarded as a single disease in terms of treatment. However, emerging evidence suggests that the two major subtypes of NSCLC—adenocarcinoma and squamous cell carcinoma (SqCC)—respond differently to chemotherapy. Adenocarcinoma and SqCC start in different types of lung cell and experts think that for each cell type in the body, specific combinations of mutations interact with the cell type's own unique characteristics to provide the growth and survival advantage needed for cancer development. If this is true, then identifying the molecular differences between adenocarcinoma and SqCC could provide targets for more effective therapies for these major subtypes of NSCLC. Amplification of a chromosome region called 8p12 is very common in NSCLC, which suggests that an oncogene that drives lung cancer development is present in this chromosome region. In this study, the researchers investigate this possibility by looking for an amplified gene in the 8p12 chromosome region that makes increased amounts of protein in lung SqCC but not in lung adenocarcinoma.
What Did the Researchers Do and Find?
The researchers used a technique called comparative genomic hybridization to show that focal regions of Chromosome 8p are amplified in about 40% of lung SqCCs, but that DNA loss in this region is the most common alteration in lung adenocarcinomas. Ten genes in the 8p12 chromosome region were expressed at higher levels in the SqCC samples that they examined than in adenocarcinoma samples, they report, and overexpression of five of these genes correlated with amplification of the 8p12 region in the SqCC samples. Only one of the genes—BRF2—was more highly expressed in squamous carcinoma cells than in normal bronchial epithelial cells (the cell type that lines the tubes that take air into the lungs and from which SqCC develops). Artificially induced expression of BRF2 in bronchial epithelial cells made these normal cells behave like tumor cells, whereas reduction of BRF2 expression in squamous carcinoma cells made them behave more like normal bronchial epithelial cells. Finally, BRF2 was frequently activated in two early stages of squamous cell carcinoma—bronchial carcinoma in situ and dysplastic lesions.
What Do These Findings Mean?
Together, these findings show that the focal amplification of chromosome region 8p12 plays a role in the development of lung SqCC but not in the development of lung adenocarcinoma, the other major subtype of NSCLC. These findings identify BRF2 (which encodes a RNA polymerase III transcription initiation factor, a protein that is required for the synthesis of RNA molecules that help to control cell growth) as a lung SqCC-specific oncogene and uncover a unique mechanism for lung SqCC development. Most importantly, these findings suggest that genetic activation of BRF2 could be used as a marker for lung SqCC, which might facilitate the early detection of this type of NSCLC and that BRF2 might provide a new target for therapy.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000315.
The US National Cancer Institute provides detailed information for patients and professionals about all aspects of lung cancer, including information on non-small cell carcinoma (in English and Spanish)
Cancer Research UK also provides information about lung cancer and information on how cancer starts
MedlinePlus has links to other resources about lung cancer (in English and Spanish)
doi:10.1371/journal.pmed.1000315
PMCID: PMC2910599  PMID: 20668658
14.  FACADE: a fast and sensitive algorithm for the segmentation and calling of high resolution array CGH data 
Nucleic Acids Research  2010;38(15):e157.
The availability of high resolution array comparative genomic hybridization (CGH) platforms has led to increasing complexities in data analysis. Specifically, defining contiguous regions of alterations or segmentation can be computationally intensive and popular algorithms can take hours to days for the processing of arrays comprised of hundreds of thousands to millions of elements. Additionally, tumors tend to demonstrate subtle copy number alterations due to heterogeneity, ploidy and hybridization effects. Thus, there is a need for fast, sensitive array CGH segmentation and alteration calling algorithms. Here, we describe Fast Algorithm for Calling After Detection of Edges (FACADE), a highly sensitive and easy to use algorithm designed to rapidly segment and call high resolution array data.
doi:10.1093/nar/gkq548
PMCID: PMC2926625  PMID: 20551132
16.  Disruption of the non-canonical WNT pathway in lung squamous cell carcinoma 
Clinical medicine. Oncology  2008;2008(2):169-179.
Disruptions of beta-catenin and the canonical Wnt pathway are well documented in cancer. However, little is known of the non-canonical branch of the Wnt pathway. In this study, we investigate the transcript level patterns of genes in the Wnt pathway in squamous cell lung cancer using reverse-transcriptase (RT)-PCR. It was found that over half of the samples examined exhibited dysregulated gene expression of multiple components of the non-canonical branch of the WNT pathway. In the cases where beta catenin (CTNNB1) was not over-expressed, we identified strong relationships of expression between wingless-type MMTV integration site family member 5A (WNT5A)/ frizzled homolog 2 (FZD2), frizzled homolog 3 (FZD3) / dishevelled 2 (DVL2), and low density lipoprotein receptor-related protein 5 (LRP5)/ secreted frizzled-related protein 4 (SFRP4). This is one of the first studies to demonstrate expression of genes in the non-canonical pathway in normal lung tissue and its disruption in lung squamous cell carcinoma. These findings suggest that the non-canonical pathway may have a more prominent role in lung cancer than previously reported.
PMCID: PMC2855195  PMID: 20401333
WNT pathway; lung cancer; gene expression; NSCLC; non-canonical; squamous cell carcinoma
17.  In vivo Optical Coherence Tomography Imaging of Preinvasive Bronchial Lesions 
Purpose
Optical coherence tomography (OCT) is an optical imaging method that can visualize cellular and extracellular structures at and below tissue surface. The objective of the study was to determine if OCT could characterize preneoplastic changes in the bronchial epithelium identified by autofluorescence bronchoscopy.
Experimental Design
A 1.5-mm fiberoptic probe was inserted via a bronchoscope into the airways of 138 volunteer heavy smokers participating in a chemoprevention trial and 10 patients with lung cancer to evaluate areas that were found to be normal or abnormal on autofluorescence bronchoscopy. Radial scanning of the airways was done to generate OCT images in real time. Following OCT imaging, the same sites were biopsied for pathologic correlation.
Results
A total of 281 OCT images and the corresponding bronchial biopsies were obtained. The histopathology of these areas includes 145 normal/hyperplasia, 61 metaplasia, 39 mild dysplasia, 10 moderate dysplasia, 6 severe dysplasia, 7 carcinoma in situ, and 13 invasive carcinomas. Quantitative measurement of the epithelial thickness showed that invasive carcinoma was significantly different than carcinoma in situ (P = 0.004) and dysplasia was significantly different than metaplasia or hyperplasia (P = 0.002). In addition, nuclei of the cells corresponding to histologic results became more discernible in lesions that were moderate dysplasia or worse compared with lower-grade lesions.
Conclusion
Preliminary data suggest that autofluorescence bronchoscopy – guided OCT imaging of bronchial lesions is technically feasible. OCT may be a promising nonbiopsy tool for in vivo imaging of preneoplastic bronchial lesions to study their natural history and the effect of chemopreventive intervention.
doi:10.1158/1078-0432.CCR-07-4418
PMCID: PMC2849640  PMID: 18381938
18.  Transcriptome Profiles of Carcinoma-in-Situ and Invasive Non-Small Cell Lung Cancer as Revealed by SAGE 
PLoS ONE  2010;5(2):e9162.
Background
Non-small cell lung cancer (NSCLC) presents as a progressive disease spanning precancerous, preinvasive, locally invasive, and metastatic lesions. Identification of biological pathways reflective of these progressive stages, and aberrantly expressed genes associated with these pathways, would conceivably enhance therapeutic approaches to this devastating disease.
Methodology/Principal Findings
Through the construction and analysis of SAGE libraries, we have determined transcriptome profiles for preinvasive carcinoma-in-situ (CIS) and invasive squamous cell carcinoma (SCC) of the lung, and compared these with expression profiles generated from both bronchial epithelium, and precancerous metaplastic and dysplastic lesions using Ingenuity Pathway Analysis. Expression of genes associated with epidermal development, and loss of expression of genes associated with mucociliary biology, are predominant features of CIS, largely shared with precancerous lesions. Additionally, expression of genes associated with xenobiotic metabolism/detoxification is a notable feature of CIS, and is largely maintained in invasive cancer. Genes related to tissue fibrosis and acute phase immune response are characteristic of the invasive SCC phenotype. Moreover, the data presented here suggests that tissue remodeling/fibrosis is initiated at the early stages of CIS. Additionally, this study indicates that alteration in copy-number status represents a plausible mechanism for differential gene expression in CIS and invasive SCC.
Conclusions/Significance
This study is the first report of large-scale expression profiling of CIS of the lung. Unbiased expression profiling of these preinvasive and invasive lesions provides a platform for further investigations into the molecular genetic events relevant to early stages of squamous NSCLC development. Additionally, up-regulated genes detected at extreme differences between CIS and invasive cancer may have potential to serve as biomarkers for early detection.
doi:10.1371/journal.pone.0009162
PMCID: PMC2820080  PMID: 20161782
19.  Oncogene Mutations, Copy Number Gains and Mutant Allele Specific Imbalance (MASI) Frequently Occur Together in Tumor Cells 
PLoS ONE  2009;4(10):e7464.
Background
Activating mutations in one allele of an oncogene (heterozygous mutations) are widely believed to be sufficient for tumorigenesis. However, mutant allele specific imbalance (MASI) has been observed in tumors and cell lines harboring mutations of oncogenes.
Methodology/Principal Findings
We determined 1) mutational status, 2) copy number gains (CNGs) and 3) relative ratio between mutant and wild type alleles of KRAS, BRAF, PIK3CA and EGFR genes by direct sequencing and quantitative PCR assay in over 400 human tumors, cell lines, and xenografts of lung, colorectal, and pancreatic cancers. Examination of a public database indicated that homozygous mutations of five oncogenes were frequent (20%) in 833 cell lines of 12 tumor types. Our data indicated two major forms of MASI: 1) MASI with CNG, either complete or partial; and 2) MASI without CNG (uniparental disomy; UPD), due to complete loss of wild type allele. MASI was a frequent event in mutant EGFR (75%) and was due mainly to CNGs, while MASI, also frequent in mutant KRAS (58%), was mainly due to UPD. Mutant: wild type allelic ratios at the genomic level were precisely maintained after transcription. KRAS mutations or CNGs were significantly associated with increased ras GTPase activity, as measured by ELISA, and the two molecular changes were synergistic. Of 237 lung adenocarcinoma tumors, the small number with both KRAS mutation and CNG were associated with shortened survival.
Conclusions
MASI is frequently present in mutant EGFR and KRAS tumor cells, and is associated with increased mutant allele transcription and gene activity. The frequent finding of mutations, CNGs and MASI occurring together in tumor cells indicates that these three genetic alterations, acting together, may have a greater role in the development or maintenance of the malignant phenotype than any individual alteration.
doi:10.1371/journal.pone.0007464
PMCID: PMC2757721  PMID: 19826477
20.  Model-based analysis of reflectance and fluorescence spectra for in vivo detection of cervical dysplasia and cancer 
Journal of biomedical optics  2008;13(6):064016.
Development, validation, and implementation of an analytical model to extract biologically and diagnostically relevant parameters from measured cervical tissue reflectance and fluorescence spectra are presented. Monte Carlo simulations of tissue reflectance are used to determine the relative contribution of the signal from the epithelium and stroma. The results indicate that the clinical probe used collects a majority of its reflectance signal from the stroma; therefore, a one-layer analytical model of reflectance is used. Two analytical approaches to calculate reflectance spectra are compared to Monte Carlo simulations, and a diffusion theory-based model is implemented. The model is validated by fitting spectra generated from Monte Carlo simulations and comparing the input and output parameters. Median agreement between extracted optical properties and input parameters is 10.6%. The reflectance model is used together with an analytical model of tissue fluorescence to extract optical properties and fluorophore concentrations from 748 clinical measurements of cervical tissue. A diagnostic algorithm based on these extracted parameters is developed and evaluated using cross-validation. The sensitivity/specificity of this algorithm relative to the gold standard of histopathology per measurement are 85/51%; this is comparable to accuracy reported in other studies of optical technologies for detection of cervical cancer and its precursors.
doi:10.1117/1.3013307
PMCID: PMC2701358  PMID: 19123662
diffuse reflectance spectroscopy; fluorescence spectroscopy; cancer diagnosis
21.  Potential Use of Quantitative Tissue Phenotype to Predict Malignant Risk for Oral Premalignant Lesions 
Cancer research  2008;68(9):3099-3107.
The importance of early diagnosis in improving mortality and morbidity rates of oral squamous cell carcinoma (SCC) has long been recognized. However, a major challenge for early diagnosis is our limited ability to differentiate oral premalignant lesions (OPLs) at high risk of progressing into invasive SCC from those at low risk. We investigated the potential of Quantitative Tissue Phenotype (QTP), measured by high-resolution image analysis, to recognize severe dysplasia/carcinoma in situ (CIS) (known to have an increased risk of progression) and to predict progression within hyperplasia or mild/moderate dysplasia (termed HMD). We generated a Nuclear Phenotypic Score (NPS), a combination of 5 nuclear morphometric features that best discriminate 4,027 “normal” nuclei (selected from 29 normal oral biopsies) from 4,298 “abnormal” nuclei (selected from 30 SCC biopsies). This NPS was then determined for a set of 69 OPLs. Severe dysplasia/CIS, showed a significant increase in NPS compared to HMD. However, within the latter group, elevated NPS was strongly associated with the presence of high-risk LOH patterns. There was a statistical difference between NPS of HMD that progressed to cancer and those that did not. Individuals with a high NPS had a 10-fold increase in relative risk of progression. In the multivariate Cox model, LOH and NPS together were the strongest predictors for cancer development. These data suggest that QTP could be used to identify lesions that require molecular evaluation and should be integrated with such approaches to facilitate the identification of HMD OPLs at high risk of progression.
doi:10.1158/0008-5472.CAN-07-2113
PMCID: PMC2693059  PMID: 18451134
Risk prediction; oral malignancy; LOH; dysplasia; image analysis
22.  SIGMA2: A system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes 
BMC Bioinformatics  2008;9:422.
Background
High throughput microarray technologies have afforded the investigation of genomes, epigenomes, and transcriptomes at unprecedented resolution. However, software packages to handle, analyze, and visualize data from these multiple 'omics disciplines have not been adequately developed.
Results
Here, we present SIGMA2, a system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes. Multi-dimensional datasets can be simultaneously visualized and analyzed with respect to each dimension, allowing combinatorial integration of the different assays belonging to the different 'omics.
Conclusion
The identification of genes altered at multiple levels such as copy number, loss of heterozygosity (LOH), DNA methylation and the detection of consequential changes in gene expression can be concertedly performed, establishing SIGMA2 as a novel tool to facilitate the high throughput systems biology analysis of cancer.
doi:10.1186/1471-2105-9-422
PMCID: PMC2571113  PMID: 18840289
23.  New Hope for an Oral Cancer Solution: Together We Can Make a Difference 
Oral cancer is associated with high mortality and morbidity rates, largely as a result of late diagnosis. Although dental practitioners are trained to identify premalignant and malignant lesions, an organized system is needed to offer guidance and to improve access to experts in diagnosis and management of these lesions. In this article, we describe how the British Columbia Oral Cancer Prevention Program (BC OCPP) is addressing this challenge in several ways: by linking community dental practices and referral centres, by creating partnerships between scientists and clinicians that already have resulted in new technologies to enhance early diagnosis, by involving a broad range of stakeholders to ensure population-based screening and by engaging in provincial, national and international outreach.
For citation purposes, the electronic version is the definitive version of this article: www.cda-adc.ca/jcda/vol-74/issue-3/XXX.html
PMCID: PMC2387224  PMID: 18387266
24.  MD-SeeGH: a platform for integrative analysis of multi-dimensional genomic data 
BMC Bioinformatics  2008;9:243.
Background
Recent advances in global genomic profiling methodologies have enabled multi-dimensional characterization of biological systems. Complete analysis of these genomic profiles require an in depth look at parallel profiles of segmental DNA copy number status, DNA methylation state, single nucleotide polymorphisms, as well as gene expression profiles. Due to the differences in data types it is difficult to conduct parallel analysis of multiple datasets from diverse platforms.
Results
To address this issue, we have developed an integrative genomic analysis platform MD-SeeGH, a software tool that allows users to rapidly and directly analyze genomic datasets spanning multiple genomic experiments. With MD-SeeGH, users have the flexibility to easily update datasets in accordance with new genomic builds, make a quality assessment of data using the filtering features, and identify genetic alterations within single or across multiple experiments. Multiple sample analysis in MD-SeeGH allows users to compare profiles from many experiments alongside tracks containing detailed localized gene information, microRNA, CpG islands, and copy number variations.
Conclusion
MD-SeeGH is a new platform for the integrative analysis of diverse microarray data, facilitating multiple profile analyses and group comparisons.
doi:10.1186/1471-2105-9-243
PMCID: PMC2408605  PMID: 18492270
25.  Up regulation in gene expression of chromatin remodelling factors in cervical intraepithelial neoplasia 
BMC Genomics  2008;9:64.
Background
The highest rates of cervical cancer are found in developing countries. Frontline monitoring has reduced these rates in developed countries and present day screening programs primarily identify precancerous lesions termed cervical intraepithelial neoplasias (CIN). CIN lesions described as mild dysplasia (CIN I) are likely to spontaneously regress while CIN III lesions (severe dysplasia) are likely to progress if untreated. Thoughtful consideration of gene expression changes paralleling the progressive pre invasive neoplastic development will yield insight into the key casual events involved in cervical cancer development.
Results
In this study, we have identified gene expression changes across 16 cervical cases (CIN I, CIN II, CIN III and normal cervical epithelium) using the unbiased long serial analysis of gene expression (L-SAGE) method. The 16 L-SAGE libraries were sequenced to the level of 2,481,387 tags, creating the largest SAGE data collection for cervical tissue worldwide. We have identified 222 genes differentially expressed between normal cervical tissue and CIN III. Many of these genes influence biological functions characteristic of cancer, such as cell death, cell growth/proliferation and cellular movement. Evaluation of these genes through network interactions identified multiple candidates that influence regulation of cellular transcription through chromatin remodelling (SMARCC1, NCOR1, MRFAP1 and MORF4L2). Further, these expression events are focused at the critical junction in disease development of moderate dysplasia (CIN II) indicating a role for chromatin remodelling as part of cervical cancer development.
Conclusion
We have created a valuable publically available resource for the study of gene expression in precancerous cervical lesions. Our results indicate deregulation of the chromatin remodelling complex components and its influencing factors occur in the development of CIN lesions. The increase in SWI/SNF stabilizing molecule SMARCC1 and other novel genes has not been previously illustrated as events in the early stages of dysplasia development and thus not only provides novel candidate markers for screening but a biological function for targeting treatment.
doi:10.1186/1471-2164-9-64
PMCID: PMC2277413  PMID: 18248679

Results 1-25 (32)