PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (72)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Potential application of non-small cell lung cancer-associated autoantibodies to early cancer diagnosis 
To identify a panel of tumor associated autoantibodies which can potentially be used as biomarkers for the early diagnosis of non-small cell lung cancer (NSCLC). Thirty-five unique and in-frame expressed phage proteins were isolated. Based on the gene expression profiling, four proteins were selected for further study. Both receiver operating characteristic curve analysis and leave-one-out method revealed that combined measurements of four antibodies produced have better predictive accuracies than any single marker alone. Leave-one-out validation also showed significant relevance with all stages of NSCLC patients. The panel of autoantibodies has a high potential for detecting early stage NSCLC.
doi:10.1016/j.bbrc.2012.06.050
PMCID: PMC4512951  PMID: 22713465
NSCLC; Tumor-associated autoantibodies; SEREX; Early diagnosis
2.  K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates 
Science (New York, N.Y.)  2014;347(6220):428-431.
The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from ≤0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites.
doi:10.1126/science.1260867
PMCID: PMC4349400  PMID: 25502314
3.  Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology 
Scientific Reports  2015;5:10423.
Human PIWI-interacting RNAs (piRNAs) are known to be expressed in germline cells, functionally silencing LINEs and SINEs. Their expression patterns in somatic tissues are largely uncharted. We analyzed 6,260 human piRNA transcriptomes derived from non-malignant and tumour tissues from 11 organs. We discovered that only 273 of the 20,831 known piRNAs are expressed in somatic non-malignant tissues. However, expression patterns of these piRNAs were able to distinguish tissue-of-origin. A total of 522 piRNAs are expressed in corresponding tumour tissues, largely distinguishing tumour from non-malignant tissues in a cancer-type specific manner. Most expressed piRNAs mapped to known transcripts, contrary to “piRNA clusters” reported in germline cells. We showed that piRNA expression can delineate clinical features, such as histological subgroups, disease stages, and survival. PiRNAs common to many cancer types might represent a core gene-set that facilitates cancer growth, while piRNAs unique to individual cancer types likely contribute to cancer-specific biology.
doi:10.1038/srep10423
PMCID: PMC4444957  PMID: 26013764
4.  DNA Methylation Is Globally Disrupted and Associated with Expression Changes in Chronic Obstructive Pulmonary Disease Small Airways 
DNA methylation is an epigenetic modification that is highly disrupted in response to cigarette smoke and involved in a wide spectrum of malignant and nonmalignant diseases, but surprisingly not previously assessed in small airways of patients with chronic obstructive pulmonary disease (COPD). Small airways are the primary sites of airflow obstruction in COPD. We sought to determine whether DNA methylation patterns are disrupted in small airway epithelia of patients with COPD, and evaluate whether changes in gene expression are associated with these disruptions. Genome-wide methylation and gene expression analysis were performed on small airway epithelial DNA and RNA obtained from the same patient during bronchoscopy, using Illumina’s Infinium HM27 and Affymetrix’s Genechip Human Gene 1.0 ST arrays. To control for known effects of cigarette smoking on DNA methylation, methylation and gene expression profiles were compared between former smokers with and without COPD matched for age, pack-years, and years of smoking cessation. Our results indicate that aberrant DNA methylation is (1) a genome-wide phenomenon in small airways of patients with COPD, and (2) associated with altered expression of genes and pathways important to COPD, such as the NF-E2–related factor 2 oxidative response pathway. DNA methylation is likely an important mechanism contributing to modulation of genes important to COPD pathology. Because these methylation events may underlie disease-specific gene expression changes, their characterization is a critical first step toward the development of epigenetic markers and an opportunity for developing novel epigenetic therapeutic interventions for COPD.
doi:10.1165/rcmb.2013-0304OC
PMCID: PMC4068945  PMID: 24298892
chronic obstructive pulmonary disease; small airways; epigenetic regulation; DNA methylation; integrative omics
5.  A search for novel cancer/testis antigens in lung cancer identifies VCX/Y genes expanding the repertoire of potential immunotherapeutic targets 
Cancer research  2014;74(17):4694-4705.
Cancer/testis (CT) antigens are potential immunotherapeutic targets in cancer. However, the expression of particular antigens is limited to a subset of tumors of a given type. Thus, there is a need to identify antigens with complementary expression patterns for effective therapeutic intervention. In this study, we searched for genes that were distinctly expressed at a higher level in lung tumor tissue and the testes compared to other non-tumor tissues and identified members of the VCX/Y gene family as novel CT antigens. VCX3A, a member of the VCX/Y gene family, was expressed at the protein level in approximately 20% of lung adenocarcinomas and 35% of squamous cell carcinomas, but not expressed in normal lung tissues. Among CT antigens with concordant mRNA and protein expression levels, four CT antigens, XAGE1, VCX, IL13RA2, and SYCE1, were expressed, alone or in combination, in about 80% of lung adenocarcinoma tumors. The CT antigen VCX/Y gene family broadens the spectrum of CT antigens expressed in lung adenocarcinomas for clinical applications.
doi:10.1158/0008-5472.CAN-13-3725
PMCID: PMC4398029  PMID: 24970476
Cancer/testis antigen; VCX/Y; lung cancer; immunotherapy
6.  Pro–Surfactant Protein B As a Biomarker for Lung Cancer Prediction 
Journal of Clinical Oncology  2013;31(36):4536-4543.
Purpose
Preliminary studies have identified pro–surfactant protein B (pro-SFTPB) to be a promising blood biomarker for non–small-cell lung cancer. We conducted a study to determine the independent predictive potential of pro-SFTPB in identifying individuals who are subsequently diagnosed with lung cancer.
Patients and Methods
Pro-SFTPB levels were measured in 2,485 individuals, who enrolled onto the Pan-Canadian Early Detection of Lung Cancer Study by using plasma sample collected at the baseline visit. Multivariable logistic regression models were used to evaluate the predictive ability of pro-SFTPB in addition to known lung cancer risk factors. Calibration and discrimination were evaluated, the latter by an area under the receiver operating characteristic curve (AUC). External validation was performed with samples collected in the Carotene and Retinol Efficacy Trial (CARET) participants using a case-control study design.
Results
Adjusted for age, sex, body mass index, personal history of cancer, family history of lung cancer, forced expiratory volume in one second percent predicted, average number of cigarettes smoked per day, and smoking duration, pro-SFTPB (log transformed) had an odds ratio of 2.220 (95% CI, 1.727 to 2.853; P < .001). The AUCs of the full model with and without pro-SFTPB were 0.741 (95% CI, 0.696 to 0.783) and 0.669 (95% CI, 0.620 to 0.717; difference in AUC P < .001). In the CARET Study, the use of pro-SFPTB yielded an AUC of 0.683 (95% CI, 0.604 to 0.761).
Conclusion
Pro-SFTPB in plasma is an independent predictor of lung cancer and may be a valuable addition to existing lung cancer risk prediction models.
doi:10.1200/JCO.2013.50.6105
PMCID: PMC3871515  PMID: 24248694
7.  YEATS4 is a novel oncogene amplified in non-small cell lung cancer that regulates the p53 pathway 
Cancer research  2013;73(24):7301-7312.
Genetic analyses of lung cancer have helped found new treatments in this disease. We conducted an integrative analysis of gene expression and copy number in 261 non-small cell lung cancers (NSCLC) relative to matched normal tissues to define novel candidate oncogenes, identifying 12q13-15 and more specifically the YEATS4 gene as amplified and overexpressed in ~20% of the NSCLC cases examined. Overexpression of YEATS4 abrogated senescence in human bronchial epithelial cells (HBECs). Conversely, RNAi-mediated attenuation of YEATS4 in human lung cancer cells reduced their proliferation and tumor growth, impairing colony formation and inducing cellular senescence. These effects were associated with increased levels of p21WAF1 and p53 and cleavage of PARP, implicating YEATS4 as a negative regulator of the p21-p53 pathway. We also found that YEATS4 expression affected cellular responses to cisplastin, with increased levels associated with resistance and decreased levels with sensitivity. Taken together, our findings reveal YEATS4 as a candidate oncogene amplified in NSCLC, and a novel mechanism contributing to NSCLC pathogenesis.
doi:10.1158/0008-5472.CAN-13-1897
PMCID: PMC3959870  PMID: 24170126
YEATS4; NSCLC; oncogene; p53; integrative analysis
8.  Smoking status impacts microRNA mediated prognosis and lung adenocarcinoma biology 
BMC Cancer  2014;14:778.
Background
Cigarette smoke is associated with the majority of lung cancers: however, 25% of lung cancer patients are non-smokers, and half of all newly diagnosed lung cancer patients are former smokers. Lung tumors exhibit distinct epidemiological, clinical, pathological, and molecular features depending on smoking status, suggesting divergent mechanisms underlie tumorigenesis in smokers and non-smokers. MicroRNAs (miRNAs) are integral contributors to tumorigenesis and mediate biological responses to smoking. Based on the hypothesis that smoking-specific miRNA differences in lung adenocarcinomas reflect distinct tumorigenic processes selected by different smoking and non-smoking environments, we investigated the contribution of miRNA disruption to lung tumor biology and patient outcome in the context of smoking status.
Methods
We applied a whole transcriptome sequencing based approach to interrogate miRNA levels in 94 patient-matched lung adenocarcinoma and non-malignant lung parenchymal tissue pairs from current, former and never smokers.
Results
We discovered novel and distinct smoking status-specific patterns of miRNA and miRNA-mediated gene networks, and identified miRNAs that were prognostically significant in a smoking dependent manner.
Conclusions
We conclude that miRNAs disrupted in a smoking status-dependent manner affect distinct cellular pathways and differentially influence lung cancer patient prognosis in current, former and never smokers. Our findings may represent promising biologically relevant markers for lung cancer prognosis or therapeutic intervention.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2407-14-778) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2407-14-778
PMCID: PMC4216369  PMID: 25342220
Lung adenocarcinoma; miRNA; Current smoker; Former smoker; Never smoker; Reversible; Survival; Smoking specific
9.  MicroRNAs As Biomarkers For Clinical Features Of Lung Cancer 
Metabolomics : open access  2012;2(3):1000108-.
Each year about 1.4 million people die from lung cancer worldwide. Despite efforts in prevention, diagnosis and treatment, survival rate remains poor for this disease. This unfortunate situation is largely due to the fact that a high proportion of cases are diagnosed at advanced stages, highlighting the great need for identifying new biomarkers in order to improve early diagnosis and treatment. Recent studies on microRNAs have not only shed light on their involvement in tumor development and progression, but also suggested their potential utility as biomarkers for subtype diagnostics, staging and prediction of treatment response. This review article summarizes the impact of microRNAs on lung cancer biology, and highlights their role in the detection and classification of lung cancer as well as direct targets for drug development.
doi:10.4172/2153-0769.1000108
PMCID: PMC4159950  PMID: 25221729
10.  A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia 
Journal of Medical Genetics  2014;51(9):590-595.
Background
Spinocerebellar ataxias (SCAs) are a group of clinically and genetically diverse and autosomal-dominant disorders characterised by neurological deficits in the cerebellum. At present, there is no cure for SCAs. Of the different distinct subtypes of autosomal-dominant SCAs identified to date, causative genes for only a fraction of them are currently known. In this study, we investigated the cause of an autosomal-dominant SCA phenotype in a family that exhibits cerebellar ataxia and pontocerebellar atrophy along with a global reduction in brain volume.
Methods and results
Whole-exome analysis revealed a missense mutation c.G1391A (p.R464H) in the coding region of the coiled-coil domain containing 88C (CCDC88C) gene in all affected individuals. Functional studies showed that the mutant form of CCDC88C activates the c-Jun N-terminal kinase (JNK) pathway, induces caspase 3 cleavage and triggers apoptosis.
Conclusions
This study expands our understanding of the cause of autosomal-dominant SCAs, a group of heterogeneous congenital neurological conditions in humans, and unveils a link between the JNK stress pathway and cerebellar atrophy.
doi:10.1136/jmedgenet-2014-102333
PMCID: PMC4145425  PMID: 25062847
Neurology; Clinical Genetics
11.  A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography 
Biomedical Optics Express  2014;5(9):2978-2987.
We present a power-efficient fiber-based imaging system capable of co-registered autofluorescence imaging and optical coherence tomography (AF/OCT). The system employs a custom fiber optic rotary joint (FORJ) with an embedded dichroic mirror to efficiently combine the OCT and AF pathways. This three-port wavelength multiplexing FORJ setup has a throughput of more than 83% for collected AF emission, significantly more efficient compared to previously reported fiber-based methods. A custom 900 µm diameter catheter ‒ consisting of a rotating lens assembly, double-clad fiber (DCF), and torque cable in a stationary plastic tube ‒ was fabricated to allow AF/OCT imaging of small airways in vivo. We demonstrate the performance of this system ex vivo in resected porcine airway specimens and in vivo in human on fingers, in the oral cavity, and in peripheral airways.
doi:10.1364/BOE.5.002978
PMCID: PMC4230860  PMID: 25401011
(110.0110) Imaging systems; (110.2350) Fiber optics imaging; (110.4500) Optical coherence tomography; (170.2520) Fluorescence microscopy; (170.3890) Medical optics instrumentation
12.  EZH2 promotes E2F driven SCLC tumorigenesis through modulation of apoptosis and cell cycle regulation 
Introduction
While EZH2 has been associated with both non small cell and small cell lung cancers, current observations suggest different mechanisms of EZH2 activation and overexpression in these lung cancer types. Globally, small cell lung cancer (SCLC) kills 200,000 people yearly. New clinical approaches for SCLC treatment are required to improve the poor survival rate. Given the therapeutic potential of EZH2 as a target, we sought to delineate the downstream consequences of EZH2 disruption to identify the cellular mechanisms by which EZH2 promotes tumorigenesis in SCLC.
Methods
We generated cells with stable expression of shRNA targeting EZH2 and corresponding controls (pLKO.1) and determined the consequences of EZH2 knockdown on the cell cycle and apoptosis by means of propidium iodide staining and fluorescence activated cell sorting, western blot, qRT-PCR as well as cell viability assessment using MTT assays.
Results
We discovered that EZH2 inhibition 1) increased apoptotic activity by up-regulating the pro-apoptotic factors Puma and Bad, 2) decreased the fraction of cells in S or G2/M phases, and 3) elevated p21 protein levels, implicating EZH2 in cell death and cell cycle control in SCLC.
Conclusions
Our findings present evidence for the role of EZH2 in the regulation of cell cycle and apoptosis, providing a biological mechanism to explain the tumorigenicity of EZH2 in SCLC. Our work points to the great potential of EZH2 as a therapeutic target in SCLC.
doi:10.1097/JTO.0b013e318298762f
PMCID: PMC3713495  PMID: 23857401
SCLC; EZH2; oncogene; RB1; E2F
13.  A Blood-Based Proteomic Classifier for the Molecular Characterization of Pulmonary Nodules 
Science translational medicine  2013;5(207):207ra142.
Each year millions of pulmonary nodules are discovered by computed tomography and subsequently biopsied. As the majority of these nodules are benign, many patients undergo unnecessary and costly invasive procedures. We present a 13-protein blood-based classifier that differentiates malignant and benign nodules with high confidence, thereby providing a diagnostic tool to avoid invasive biopsy on benign nodules. Using a systems biology strategy, 371 protein candidates were identified and a multiple reaction monitoring (MRM) assay was developed for each. The MRM assays were applied in a three-site discovery study (n = 143) on plasma samples from patients with benign and Stage IA cancer matched on nodule size, age, gender and clinical site, producing a 13-protein classifier. The classifier was validated on an independent set of plasma samples (n = 104), exhibiting a high negative predictive value (NPV) of 90%. Validation performance on samples from a non-discovery clinical site showed NPV of 94%, indicating the general effectiveness of the classifier. A pathway analysis demonstrated that the classifier proteins are likely modulated by a few transcription regulators (NF2L2, AHR, MYC, FOS) that are associated with lung cancer, lung inflammation and oxidative stress networks. The classifier score was independent of patient nodule size, smoking history and age, which are risk factors used for clinical management of pulmonary nodules. Thus this molecular test can provide a powerful complementary tool for physicians in lung cancer diagnosis.
doi:10.1126/scitranslmed.3007013
PMCID: PMC4114963  PMID: 24132637
14.  Pre-profiling factors influencing serum microRNA levels 
Background
MicroRNAs (miRNAs) are non-coding RNAs that negatively regulate gene expression by preventing the translation of specific mRNA transcripts. Recent studies have shown that miRNAs are stably expressed in human serum samples, making them good candidates for the non-invasive detection of disease. However, before circulating miRNAs can be used reliably as biomarkers of disease, the pre-measurement variables that may affect serum miRNA levels must be assessed.
Methods
In this study we used quantitative RT-PCR to examine the effect of hemolysis, fasting, and smoking on the levels of 742 miRNAs in the serum of healthy individuals. We also compared serum miRNA profiles of samples taken from healthy individuals over different time periods to assess normal serum miRNA fluctuations.
Results
We have found that mechanical hemolysis of blood samples can significantly alter serum miRNA quantification and have identified 162 miRNAs that are significantly up-regulated in hemolysed serum samples. Conversely, fasting and smoking were demonstrated to not have a significant effect on the overall serum miRNA profiles of healthy individuals. The serum miRNA profiles of matched samples taken from individuals over varying time periods showed a high correlation and no miRNAs were significantly differentially expressed in these samples further suggesting the utility of serum miRNAs as biomarkers of disease. Taking the above results into consideration, we have identified miR-99a-5p and miR-139-5p as novel endogenous controls for serum miRNA studies due to their consistency across all sample sets.
Conclusion
These results identify important pre-profiling factors that should be taken into consideration when identifying endogenous controls and candidate biomarkers for circulating miRNA studies.
doi:10.1186/1472-6890-14-27
PMCID: PMC4107491  PMID: 25093010
MicroRNA; Cancer; Biomarker; Serum; miR-99a-5p; miR-139-5p
15.  Validation of Airway Wall Measurements by Optical Coherence Tomography in Porcine Airways 
PLoS ONE  2014;9(6):e100145.
Examining and quantifying changes in airway morphology is critical for studying longitudinal pathogenesis and interventions in diseases such as chronic obstructive pulmonary disease and asthma. Here we present fiber-optic optical coherence tomography (OCT) as a nondestructive technique to precisely and accurately measure the 2-dimensional cross-sectional areas of airway wall substructure divided into the mucosa (WAmuc), submucosa (WAsub), cartilage (WAcart), and the airway total wall area (WAt). Porcine lung airway specimens were dissected from freshly resected lung lobes (N = 10). Three-dimensional OCT imaging using a fiber-optic rotary-pullback probe was performed immediately on airways greater than 0.9 mm in diameter on the fresh airway specimens and subsequently on the same specimens post-formalin-fixation. The fixed specimens were serially sectioned and stained with H&E. OCT images carefully matched to selected sections stained with Movat’s pentachrome demonstrated that OCT effectively identifies airway epithelium, lamina propria, and cartilage. Selected H&E sections were digitally scanned and airway total wall areas were measured. Traced measurements of WAmuc, WAsub, WAcart, and WAt from OCT images of fresh specimens by two independent observers found there were no significant differences (p>0.05) between the observer’s measurements. The same wall area measurements from OCT images of formalin-fixed specimens found no significant differences for WAsub, WAcart and WAt, and a small but significant difference for WAmuc. Bland-Altman analysis indicated there were negligible biases between the observers for OCT wall area measurements in both fresh and formalin-fixed specimens. Bland-Altman analysis also indicated there was negligible bias between histology and OCT wall area measurements for both fresh and formalin-fixed specimens. We believe this study sets the groundwork for quantitatively monitoring pathogenesis and interventions in the airways using OCT.
doi:10.1371/journal.pone.0100145
PMCID: PMC4064993  PMID: 24949633
16.  Novel FOXF1 mutations in sporadic and familial cases of Alveolar Capillary Dysplasia with Misaligned Pulmonary Veins imply a role for its DNA binding domain 
Sen, Partha | Yang, Yaping | Navarro, Colby | Silva, Iris | Szafranski, Przemyslaw | Kolodziejska, Katarzyna E. | Dharmadhikari, Avinash V. | Mostafa, Hasnaa | Kozakewich, Harry | Kearney, Debra | Cahill, John B. | Whitt, Merrissa | Bilic, Masha | Margraf, Linda | Charles, Adrian | Goldblatt, Jack | Gibson, Kathleen | Lantz, Patrick | Garvin, Julian | Petty, John | Kiblawi, Zeina | Zuppan, Craig | McConkie-Rosell, Allyn | McDonald, Marie T. | Peterson-Carmichael, Stacey L. | Gaede, Jane T. | Shivanna, Binoy | Schady, Deborah | Friedlich, Philippe S. | Hays, Stephen R. | Palafoll, Irene Valenzuela | Siebers-Renelt, Ulrike | Bohring, Axel | Finn, Laura S. | Siebert, Joseph R. | Galambos, Csaba | Nguyen, Lananh | Riley, Melissa | Chassaing, Nicolas | Vigouroux, Adeline | Rocha, Gustavo | Fernandes, Susana | Brumbaugh, Jane | Roberts, Kari | Ho-ming, Luk | Lo, Ivan | Lam, Stephen | Gerychova, Romana | Jezova, Marta | Valaskova, Iveta | Fellmann, Florence | Afshar, Katayoun | Giannoni, Eric | Muhlethaler, Vincent | Liang, Jinlong | Beckmann, Jacques S. | Lioy, Janet | Deshmukh, Hitesh | Srinivasan, Lakshmi | Swarr, Daniel T. | Sloman, Melissa | Shaw-Smith, Charles | van Loon, Rosa Laura | Hagman, Cecilia | Sznajer, Yves | Barrea, Catherine | Galant, Christine | Detaille, Thierry | Wambach, Jennifer A. | Cole, F. Sessions | Hamvas, Aaron | Prince, Lawrence S. | Diderich, Karin E.M. | Brooks, Alice S. | Verdijk, Rob M. | Ravindranathan, Hari | Sugo, Ella | Mowat, David | Baker, Michael L. | Langston, Claire | Welty, Stephen | Stankiewicz, Pawel
Human mutation  2013;34(6):801-811.
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare and lethal developmental disorder of the lung defined by a constellation of characteristic histopathological features. Non-pulmonary anomalies involving organs of gastrointestinal, cardiovascular, and genitourinary systems have been identified in approximately 80% of patients with ACD/MPV. We have collected DNA and pathological samples from more than 90 infants with ACD/MPV and their family members. Since the publication of our initial report of four point mutations and ten deletions, we have identified an additional thirty eight novel nonsynonymous mutations of FOXF1 (nine nonsense, seven frameshift, one inframe deletion, twenty missense, and one no stop). This report represents an up to date list of all known FOXF1 mutations to the best of our knowledge. Majority of the cases are sporadic whereas four familial cases with three showing maternal inheritance, consistent with paternal imprinting of the gene. Twenty five mutations (60%) are located within the putative DNA binding domain, indicating its plausible role in gene regulation. Five mutations map to the second exon. We identified two additional genic and eight genomic deletions upstream to FOXF1. These results corroborate and extend our previous observations and further establish involvement of FOXF1 in ACD/MPV and lung organogenesis.
doi:10.1002/humu.22313
PMCID: PMC3663886  PMID: 23505205
Lung; Development; Angiogenesis; ACD/MPV; FOXF1; Imprinting
19.  Performance of chromosomal microarray for patients with intellectual disabilities/developmental delay, autism, and multiple congenital anomalies in a Chinese cohort 
Background
Chromosomal microarray (CMA) is currently the first-tier genetic test for patients with idiopathic neuropsychiatric diseases in many countries. Its improved diagnostic yield over karyotyping and other molecular testing facilitates the identification of the underlying causes of neuropsychiatric diseases. In this study, we applied oligonucleotide array comparative genomic hybridization as the molecular genetic test in a Chinese cohort of children with DD/ID, autism or MCA.
Results
CMA identified 7 clinically significant microduplications and 17 microdeletions in 19.0% (20/105) patients, with size of aberrant regions ranging from 11 kb to 10.7 Mb. Fourteen of the pathogenic copy number variant (CNV) detected corresponded to well known microdeletion or microduplication syndromes. Four overlapped with critical regions of recently identified genomic syndromes. We also identified a rare de novo 2.3 Mb deletion at 8p21.3-21.2 as a pathogenic submicroscopic CNV. We also identified two novel CNVs, one at Xq28 and the other at 12q21.31-q21.33, in two patients (1.9%) with unclear clinical significance. Overall, the detection rate of CMA is comparable to figures previously reported for accurately detect submicroscopic chromosomal imbalances and pathogenic CNVs except mosaicism, balanced translocation and inversion.
Conclusions
This study provided further evidence of an increased diagnostic yield of CMA and supported its use as a first line diagnostic tool for Chinese individuals with DD/ID, ASD, and MCA.
doi:10.1186/1755-8166-7-34
PMCID: PMC4055236  PMID: 24926319
Chromosomal microarray; Array CGH; Developmental delay; Intellectual disabilities; Multiple congenital anomalies
20.  A directional switch of integrin signaling and a new anti-thrombotic strategy 
Nature  2013;503(7474):10.1038/nature12613.
Integrins are critical in thrombosis and hemostasis1. Antagonists of the platelet integrin αIIbβ3 are potent anti-thrombotic drugs, but also have the life-threatening adverse effect of bleeding2,3. It is thus desirable to develop new antagonists that do not cause bleeding. Integrins transmit signals bidirectionally4,5. Inside-out signaling activates integrins via a talin-dependent mechanism6,7. Integrin ligation mediates thrombus formation and outside-in signaling8,9, which requires Gα13 and greatly expands thrombi. Here we show that Gα13 and talin bind to mutually exclusive, but distinct sites within the integrin β3 cytoplasmic domain in opposing waves. The first talin binding wave mediates inside-out signaling and also “ligand-induced integrin activation”, but is not required for outside-in signaling. Integrin ligation induces transient talin dissociation and Gα13 binding to an ExE motif, which selectively mediates outside-in signaling and platelet spreading. The second talin binding wave is associated with clot retraction. An ExE motif-based inhibitor of Gα13-integrin interaction selectively abolishes outside-in signaling without affecting integrin ligation, and suppresses occlusive arterial thrombosis without affecting bleeding time. Thus, we have discovered a novel mechanism for the directional switch of integrin signaling and, based on this mechanism, we designed a potent new anti-thrombotic that does not cause bleeding.
doi:10.1038/nature12613
PMCID: PMC3823815  PMID: 24162846
21.  A Dynamic Bronchial Airway Gene Expression Signature of Chronic Obstructive Pulmonary Disease and Lung Function Impairment 
Rationale: Molecular phenotyping of chronic obstructive pulmonary disease (COPD) has been impeded in part by the difficulty in obtaining lung tissue samples from individuals with impaired lung function.
Objectives: We sought to determine whether COPD-associated processes are reflected in gene expression profiles of bronchial airway epithelial cells obtained by bronchoscopy.
Methods: Gene expression profiling of bronchial brushings obtained from 238 current and former smokers with and without COPD was performed using Affymetrix Human Gene 1.0 ST Arrays.
Measurements and Main Results: We identified 98 genes whose expression levels were associated with COPD status, FEV1% predicted, and FEV1/FVC. In silico analysis identified activating transcription factor 4 (ATF4) as a potential transcriptional regulator of genes with COPD-associated airway expression, and ATF4 overexpression in airway epithelial cells in vitro recapitulates COPD-associated gene expression changes. Genes with COPD-associated expression in the bronchial airway epithelium had similarly altered expression profiles in prior studies performed on small-airway epithelium and lung parenchyma, suggesting that transcriptomic alterations in the bronchial airway epithelium reflect molecular events found at more distal sites of disease activity. Many of the airway COPD-associated gene expression changes revert toward baseline after therapy with the inhaled corticosteroid fluticasone in independent cohorts.
Conclusions: Our findings demonstrate a molecular field of injury throughout the bronchial airway of active and former smokers with COPD that may be driven in part by ATF4 and is modifiable with therapy. Bronchial airway epithelium may ultimately serve as a relatively accessible tissue in which to measure biomarkers of disease activity for guiding clinical management of COPD.
doi:10.1164/rccm.201208-1449OC
PMCID: PMC3707363  PMID: 23471465
chronic obstructive pulmonary disease; gene expression profiling; biologic markers
22.  Probability of Cancer in Pulmonary Nodules Detected on First Screening CT 
The New England journal of medicine  2013;369(10):910-919.
BACKGROUND
Major issues in the implementation of screening for lung cancer by means of low-dose computed tomography (CT) are the definition of a positive result and the management of lung nodules detected on the scans. We conducted a population-based prospective study to determine factors predicting the probability that lung nodules detected on the first screening low-dose CT scans are malignant or will be found to be malignant on follow-up.
METHODS
We analyzed data from two cohorts of participants undergoing low-dose CT screening. The development data set included participants in the Pan-Canadian Early Detection of Lung Cancer Study (PanCan). The validation data set included participants involved in chemoprevention trials at the British Columbia Cancer Agency (BCCA), sponsored by the U.S. National Cancer Institute. The final outcomes of all nodules of any size that were detected on baseline low-dose CT scans were tracked. Parsimonious and fuller multivariable logistic-regression models were prepared to estimate the probability of lung cancer.
RESULTS
In the PanCan data set, 1871 persons had 7008 nodules, of which 102 were malignant, and in the BCCA data set, 1090 persons had 5021 nodules, of which 42 were malignant. Among persons with nodules, the rates of cancer in the two data sets were 5.5% and 3.7%, respectively. Predictors of cancer in the model included older age, female sex, family history of lung cancer, emphysema, larger nodule size, location of the nodule in the upper lobe, part-solid nodule type, lower nodule count, and spiculation. Our final parsimonious and full models showed excellent discrimination and calibration, with areas under the receiver-operating-characteristic curve of more than 0.90, even for nodules that were 10 mm or smaller in the validation set.
CONCLUSIONS
Predictive tools based on patient and nodule characteristics can be used to accurately estimate the probability that lung nodules detected on baseline screening low-dose CT scans are malignant. (Funded by the Terry Fox Research Institute and others; ClinicalTrials.gov number, NCT00751660.)
doi:10.1056/NEJMoa1214726
PMCID: PMC3951177  PMID: 24004118
23.  Randomized Phase II Trial of Sulindac for Lung Cancer Chemoprevention 
Introduction
Sulindac represents a promising candidate agent for lung cancer chemoprevention, but clinical trial data have not been previously reported. We conducted a randomized, phase II chemoprevention trial involving current or former cigarette smokers (≥ 30 pack-years) utilizing the multi-center, inter-disciplinary infrastructure of the Cancer Prevention Network (CPN).
Methods
At least 1 bronchial dysplastic lesion identified by fluorescence bronchoscopy was required for randomization. Intervention assignments were sulindac 150 mg bid or an identical placebo bid for six months. Trial endpoints included changes in histologic grade of dysplasia (per-participant as primary endpoint and per lesion as secondary endpoint), number of dysplastic lesions (per-participant), and Ki67 labeling index.
Results
Slower than anticipated recruitment led to trial closure after randomizing participants (n = 31 and n = 30 in the sulindac and placebo arms, respectively). Pre- and post-intervention fluorescence bronchoscopy data were available for 53/61 (87%) randomized, eligible participants. The median (range) of dysplastic lesions at baseline was 2 (1-12) in the sulindac arm and 2 (1-7) in the placebo arm. Change in dysplasia was categorized as regression:stable:progression for 15:3:8 (58%:12%:31%) subjects in the sulindac arm and 15:2:10 (56%:7%:37%) subjects in the placebo arm; these distributions were not statistically different (p=0.85). Median Ki67 expression (% cells stained positive) was significantly reduced in both the placebo (30 versus 5; p = 0.0005) and sulindac (30 versus 10; p = 0.0003) arms, but the difference between arms was not statistically significant (p = 0.92).
Conclusions
Data from this multi-center, phase II squamous cell lung cancer chemoprevention trial do not demonstrate sufficient benefits from sulindac 150 mg bid for 6 months to warrant additional phase III testing. Investigation of pathway-focused agents is necessary for lung cancer chemoprevention.
doi:10.1016/j.lungcan.2012.11.011
PMCID: PMC3566344  PMID: 23261228
lung cancer; chemoprevention; phase II clinical trial; sulindac; NSAIDs
24.  Budesonide/Formoterol Enhances the Expression of Pro Surfactant Protein-B in Lungs of COPD Patients 
PLoS ONE  2013;8(12):e83881.
Rationale & Aim
Pulmonary surfactants are essential components of lung homeostasis. In chronic obstructive pulmonary disease (COPD), surfactant expression decreases in lungs whereas, there is a paradoxical increase in protein expression in plasma. The latter has been associated with poor health outcomes in COPD. The purpose of this study was to determine the relationship of surfactants and other pneumoproteins in bronchoalveolar lavage (BAL) fluid and plasma to airflow limitation and the effects of budesonide/formoterol on this relationship.
Methods
We recruited (clinical trials.gov identifier: NCT00569712) 7 smokers without COPD and 30 ex and current smokers with COPD who were free of exacerbations for at least 4 weeks. All subjects were treated with budesonide/formoterol 400/12 µg twice a day for 4 weeks. BAL fluid and plasma samples were obtained at baseline and the end of the 4 weeks. We measured lung-predominant pneumoproteins: pro-Surfactant Protein-B (pro-SFTPB), Surfactant Protein-D (SP-D), Club Cell Secretory Protein-16 (CCSP-16) and Pulmonary and Activation-Regulated Chemokine (PARC/CCL-18) in BAL fluid and plasma.
Results
BAL Pro-SFTPB concentrations had the strongest relationship with airflow limitation as measured by FEV1/FVC (Spearman rho = 0.509; p = 0.001) and FEV1% of predicted (Spearman rho =  0.362; p = 0.028). Plasma CCSP-16 concentrations were also significantly related to airflow limitation (Spearman rho = 0.362; p = 0.028 for FEV1% of predicted). The other biomarkers in BAL fluid or plasma were not significantly associated with airflow limitation. In COPD subjects, budesonide/formoterol significantly increased the BAL concentrations of pro-SFTPB by a median of 62.46 ng/ml (p = 0.022) or 48.7% from baseline median value.
Conclusion
Increased severity of COPD is associated with reduced Pro-SFTPB levels in BAL fluid. Short-term treatment with budesonide/formoterol increases these levels in BAL fluid. Long term studies will be needed to determine the clinical relevance of this observation.
doi:10.1371/journal.pone.0083881
PMCID: PMC3873417  PMID: 24386300
25.  Diagnostic bronchoscopy--current and future perspectives 
Journal of Thoracic Disease  2013;5(Suppl 5):S498-S510.
Lung cancer is the leading cause of cancer-related mortality worldwide. Standard bronchoscopy has limited ability to accurately localise and biopsy pulmonary lesions that cannot be directly visualised. The field of advanced diagnostic bronchoscopy is rapidly evolving due to advances in electronics and miniaturisation. Bronchoscopes with smaller outer working diameters, coupled with miniature radial and convex ultrasound probes, allow accurate central and peripheral pulmonary lesion localisation and biopsy while at the same time avoiding vascular structures. Increases in computational processing power allow three-dimensional reconstruction of computed tomographic raw data to enable virtual bronchoscopy (VB), providing the bronchoscopist with a preview of the bronchoscopy prior to the procedure. Navigational bronchoscopy enables targeting of peripheral pulmonary lesions (PPLs) via a “roadmap”, similar to in-car global positioning systems. Analysis of lesions on a cellular level is now possible with techniques such as optical coherence tomography (OCT) and confocal microscopy (CM). All these tools will hopefully allow earlier and safer lung cancer diagnosis and in turn better patient outcomes. This article describes these new bronchoscopic techniques and reviews the relevant literature.
doi:10.3978/j.issn.2072-1439.2013.09.08
PMCID: PMC3804879  PMID: 24163743
Lung cancer; bronchoscopy; diagnosis

Results 1-25 (72)