Search tips
Search criteria

Results 1-25 (48)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  The von Hippel-Lindau Tumor Suppressor Gene Inhibits Hepatocyte Growth Factor/Scatter Factor-Induced Invasion and Branching Morphogenesis in Renal Carcinoma Cells 
Molecular and Cellular Biology  1999;19(9):5902-5912.
Loss of function in the von Hippel-Lindau (VHL) tumor suppressor gene occurs in familial and most sporadic renal cell carcinomas (RCCs). VHL has been linked to the regulation of cell cycle cessation (G0) and to control of expression of various mRNAs such as for vascular endothelial growth factor. RCC cells express the Met receptor tyrosine kinase, and Met mediates invasion and branching morphogenesis in many cell types in response to hepatocyte growth factor/scatter factor (HGF/SF). We examined the HGF/SF responsiveness of RCC cells containing endogenous mutated (mut) forms of the VHL protein (VHL-negative RCC) with that of isogenic cells expressing exogenous wild-type (wt) VHL (VHL-positive RCC). We found that VHL-negative 786-0 and UOK-101 RCC cells were highly invasive through growth factor-reduced (GFR) Matrigel-coated filters and exhibited an extensive branching morphogenesis phenotype in response to HGF/SF in the three-dimensional (3D) GFR Matrigel cultures. In contrast, the phenotypes of A498 VHL-negative RCC cells were weaker, and isogenic RCC cells ectopically expressing wt VHL did not respond at all. We found that all VHL-negative RCC cells expressed reduced levels of tissue inhibitor of metalloproteinase 2 (TIMP-2) relative to the wt VHL-positive cells, implicating VHL in the regulation of this molecule. However, consistent with the more invasive phenotype of the 786-0 and UOK-101 VHL-negative RCC cells, the levels of TIMP-1 and TIMP-2 were reduced and levels of the matrix metalloproteinases 2 and 9 were elevated compared to the noninvasive VHL-positive RCC cells. Moreover, recombinant TIMPs completely blocked HGF/SF-mediated branching morphogenesis, while neutralizing antibodies to the TIMPs stimulated HGF/SF-mediated invasion in vitro. Thus, the loss of the VHL tumor suppressor gene is central to changes that control tissue invasiveness, and a more invasive phenotype requires additional genetic changes seen in some but not all RCC lines. These studies also demonstrate a synergy between the loss of VHL function and Met signaling.
PMCID: PMC84441  PMID: 10454537
2.  New cancer targets emerging from studies of the Von Hippel-Lindau tumor suppressor protein 
Inactivation of the von Hippel-Lindau tumor suppressor protein (pVHL) causes the most common form of kidney cancer. pVHL is part of a complex that polyubiquitinates the alpha subunit of the heterodimeric transcription factor HIF. In the presence of oxygen HIFa is prolyl hydroxylated by EglN1 (also called PHD2). This modification recruits pVHL, which then targets HIFa for proteasomal degradation. In hypoxic, or pVHL-defective, cells HIFa accumulates, binds to HIFb, and transcriptionally activates genes such as VEGF. VEGF inhibitors and mTOR inhibitors, which indirectly affect HIF, are now approved for the treatment of kidney cancer. EglN1 is a 2-oxoglutarate-dependent dioxygenase. Such enzymes can be inhibited with drug-like small molecules. EglN1 inhibitors are currently being tested for the treatment of anemia. EglN2 (PHD1) and EglN3 (PHD3), which are EglNs paralogs, appear to play HIF-independent roles in cell proliferation and apoptosis, respectively, and are garnering interest as potential cancer targets. A number of JmjC-containing proteins, including RBP2 and PLU-1, are 2-oxoglutarate-dependent dioxygenases that demethylate histones. Preclinical data suggest that inhibition of RBP2 or PLU-1 would suppress tumor growth.
PMCID: PMC4784475  PMID: 20973793
cancer; tumor suppressor protein; transcription factor
3.  A genetic mechanism for Tibetan high-altitude adaptation 
Nature genetics  2014;46(9):951-956.
Tibetans do not exhibit increased hemoglobin concentration at high altitude. We describe a high-frequency missense mutation in the EGLN1 gene, which encodes prolyl hydroxylase 2 (PHD2), that contributes to this adaptive response. We show that a variant in EGLN1, c.[12C>G; 380G>C], contributes functionally to the Tibetan high-altitude phenotype. PHD2 triggers the degradation of hypoxia-inducible factors (HIFs), which mediate many physiological responses to hypoxia, including erythropoiesis. The PHD2 p.[Asp4Glu; Cys127Ser] variant exhibits a lower Km value for oxygen, suggesting that it promotes increased HIF degradation under hypoxic conditions. Whereas hypoxia stimulates the proliferation of wild-type erythroid progenitors, the proliferation of progenitors with the c.[12C>G; 380G>C] mutation in EGLN1 is significantly impaired under hypoxic culture conditions. We show that the c.[12C>G; 380G>C] mutation originated ~8,000 years ago on the same haplotype previously associated with adaptation to high altitude. The c.[12C>G; 380G>C] mutation abrogates hypoxia-induced and HIF-mediated augmentation of erythropoiesis, which provides a molecular mechanism for the observed protection of Tibetans from polycythemia at high altitude.
PMCID: PMC4473257  PMID: 25129147
4.  Phosphorylation of ETS1 by Src Family Kinases Prevents its Recognition by the COP1 Tumor Suppressor 
Cancer cell  2014;26(2):222-234.
Oncoproteins and tumor suppressors antagonistically converge on critical nodes governing neoplastic growth, invasion, and metastasis. We discovered that phosphorylation of the ETS1 and ETS2 transcriptional oncoproteins at specific serine or threonine residues creates binding sites for the COP1 tumor suppressor protein, which is an ubiquitin ligase component, leading to their destruction. In the case of ETS1, however, phosphorylation of a neighboring tyrosine residue by Src family kinases disrupts COP1 binding, thereby stabilizing ETS1. Src-dependent accumulation of ETS1 in breast cancer cells promotes anchorage-independent growth in vitroand tumor growthin vivo. These findings expand the list of potential COP1 substrates to include proteins whose COP1-binding sites are subject to regulatory phosphorylation and provide insights into transformation by Src family kinases.
PMCID: PMC4169234  PMID: 25117710
5.  SQSTM1 is a Pathogenic Target of 5q Copy Number Gains in Kidney Cancer 
Cancer cell  2013;24(6):738-750.
Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer and is often linked to loss of chromosome 3p, which harbors the VHL tumor suppressor gene, loss of chromosome 14q, which includes HIF1A, and gain of chromosome 5q. The relevant target(s) on chromosome 5q is not known. Here we show that 5q amplification leads to overexpression of the SQSTM1 oncogene in ccRCC lines and tumors. Overexpression of SQSTM1 in ccRCC lines promoted resistance to redox stress and increased soft agar growth while downregulation of SQSTM1 decreased resistance to redox stress, impaired cellular fitness, and decreased tumor formation. Therefore the selection pressure to amplify 5q in ccRCC is driven, at least partly, by SQSTM1.
PMCID: PMC3910168  PMID: 24332042
6.  Cancer and Altered Metabolism: Potential Importance of HIF and 2-Oxoglutarate-dependent Dioxygenases 
Otto Warburg noted decades ago that cancer cells maintain very high rates of glycolysis, converting glucose to lactate, despite sufficient oxygen to perform oxidative-phosphorylation, which is the more efficient means of generating energy (ATP) from glucose. This conundrum has generated considerable speculation as to whether altered metabolism, including altered glucose metabolism, is a cause or consequence of malignancy and, if the former, what benefits altered metabolism might confer upon cancer cells. Several lines of evidence, including the recent identification of mutations affecting Fumarate Hydratase, Succinate Dehydrogenase, and Isocitrate Dehydrogenase, have strengthened the notion that altered metabolism can cause cancer and a number of non-mutually exclusive models have been put forth to rationalize why cancer cells might benefit from a high rate of glycolysis and decreased oxidative phosphorylation. This chapter will focus on the role of HIF, 2-oxoglutarate, and 2-oxoglutarate-dependent enzymes in cancer and cancer metabolism.
PMCID: PMC4197849  PMID: 22089927
7.  The Myeloma Drug Lenalidomide Promotes the Cereblon-Dependent Destruction of Ikaros Proteins 
Science (New York, N.Y.)  2013;343(6168):305-309.
Thalidomide-like drugs such as lenalidomide are clinically important treatments for multiple myeloma and show promise for other B cell malignancies. The biochemical mechanisms underlying their antitumor activity are unknown. Thalidomide was recently shown to bind to, and inhibit, the cereblon ubiquitin ligase. Cereblon loss in zebrafish causes fin defects reminiscent of the limb defects seen in children exposed to thalidomide in utero. Here we show that lenalidomide-bound cereblon acquires the ability to target for proteasomal degradation two specific B cell transcription factors, Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3). Analysis of myeloma cell lines revealed that loss of IKZF1 and IKZF3 is both necessary and sufficient for lenalidomide's therapeutic effect, suggesting that the antitumor and teratogenic activities of thalidomide-like drugs are dissociable.
PMCID: PMC4070318  PMID: 24292623
8.  Good COP1 or bad COP1? In vivo veritas 
The Journal of Clinical Investigation  2011;121(4):1263-1265.
The evolutionarily conserved protein COP1 has been shown to operate as an E3 ubiquitin ligase complex, and a number of putative substrates have been identified, including the c-JUN oncoprotein and p53 tumor suppressor protein. New work by Migliorini and colleagues described in the current issue of JCI demonstrates that COP1 acts as a tumor suppressor in vivo and does so, at least in part, by promoting the destruction of c-JUN. These findings challenge the view that COP1 regulates p53 stability and call into question the wisdom of developing COP1 inhibitors as potential anticancer agents.
PMCID: PMC3069793  PMID: 21403396
9.  (R)-2-Hydroxyglutarate is Sufficient to Promote Leukemogenesis and its Effects are Reversible 
Science (New York, N.Y.)  2013;339(6127):10.1126/science.1231677.
IDH1 and IDH2 (Isocitrate Dehydrogenase 1 and 2) mutants are common in several cancers, including leukemias, and overproduce the (R)-enantiomer of 2-hydroxyglutarate [(R)-2-HG]. Elucidating the role of IDH mutations and (R)-2-HG in leukemogenesis has been hampered by a lack of appropriate cell-based models. Here we show that a canonical IDH1 mutant, IDH1 R132H, promotes cytokine-independence and blocks differentiation in hematopoietic cells. These effects can be recapitulated by (R)-2-HG, but not (S)-2-HG, despite the fact that (S)-2-HG more potently inhibits enzymes previously linked to the pathogenesis of IDH mutant tumors, such as TET2 (Ten Eleven Translocation 2). We provide evidence that this paradox relates to the ability of (S)-2-HG, but not (R)-2-HG, to inhibit the EglN (Egg-laying Defective Nine) prolyl hydroxylases and, importantly, show that transformation by (R)-2-HG is reversible.
PMCID: PMC3836459  PMID: 23393090
10.  Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion 
Nature genetics  2011;43(10):964-968.
Prior studies have identified recurrent oncogenic mutations in colorectal adenocarcinoma1 and have surveyed exons of protein-coding genes for mutations in 11 affected individuals2,3. Here we report whole-genome sequencing from nine individuals with colorectal cancer, including primary colorectal tumors and matched adjacent non-tumor tissues, at an average of 30.7× and 31.9× coverage, respectively. We identify an average of 75 somatic rearrangements per tumor, including complex networks of translocations between pairs of chromosomes. Eleven rearrangements encode predicted in-frame fusion proteins, including a fusion of VTI1A and TCF7L2 found in 3 out of 97 colorectal cancers. Although TCF7L2 encodes TCF4, which cooperates with β-catenin4 in colorectal carcinogenesis5,6, the fusion lacks the TCF4 β-catenin–binding domain. We found a colorectal carcinoma cell line harboring the fusion gene to be dependent on VTI1A-TCF7L2 for anchorage-independent growth using RNA interference-mediated knockdown. This study shows previously unidentified levels of genomic rearrangements in colorectal carcinoma that can lead to essential gene fusions and other oncogenic events.
PMCID: PMC3802528  PMID: 21892161
11.  Loss of PHD Prolyl Hydroxylase Activity in Cardiomyocytes Phenocopies Ischemic Cardiomyopathy 
Circulation  2010;122(10):10.1161/CIRCULATIONAHA.109.922427.
Ischemic cardiomyopathy is the major cause of heart failure and a significant cause of morbidity and mortality. The degree of left ventricular dysfunction in this setting is often out of proportion to the amount of overtly infarcted tissue and how decreased delivery of oxygen and nutrients leads to impaired contractility remains incompletely understood. The PHD prolyl hydroxylases are oxygen-sensitive enzymes that transduce changes in oxygen availability into changes in the stability of the HIF transcription factor, a master regulator of genes that promote survival in a low oxygen-environment.
Methods and Results
We found that cardiac-specific PHD inactivation causes ultrastructural, histological, and functional changes reminiscent of ischemic cardiomyopathy over time. Moreover, chronic expression of a stabilized HIFα variant in cardiomyocytes also led to dilated cardiomyopathy.
Sustained loss of PHD activity and subsequent HIF activation, as would occur in the setting of chronic ischemia, is sufficient to account for many of the changes in the hearts of individuals with chronic coronary artery disease.
PMCID: PMC2971656  PMID: 20733101
cardiomyopathy; hibernation; hypoxia; ischemia; myocardium
12.  Influence of Metabolism on Epigenetics and Disease 
Cell  2013;153(1):56-69.
Chemical modifications of histones and DNA, such as histone methylation, histone acetylation, and DNA methylation, play critical roles in epigenetic gene regulation. Many of the enzymes that add or remove such chemical modifications are known, or might be suspected, to be sensitive to changes in intracellular metabolism. This knowledge provides a conceptual foundation for understanding how mutations in the metabolic enzymes SDH, FH, and IDH can result in cancer and, more broadly, for how alterations in metabolism and nutrition might contribute to disease. Here, we review literature pertinent to hypothetical connections between metabolic and epigenetic states in eukaryotic cells.
PMCID: PMC3775362  PMID: 23540690
13.  The VHL/HIF Axis in Clear Cell Renal Carcinoma 
Seminars in cancer biology  2012;23(1):18-25.
Inactivation of the VHL tumor suppressor protein (pVHL) is a common event in clear cell renal carcinoma, which is the most common form of kidney cancer. pVHL performs many functions, including serving as the substrate recognition module of an ubiquitin ligase complex that targets the alpha subunits of the heterodimeric HIF transcription factor for proteasomal degradation. Deregulation of HIF2α appears to be a driving force in pVHL-defective clear cell renal carcinomas. In contrast, genetic and functional studies suggest that HIF1α serves as a tumor suppressor and is a likely target of the 14q deletions that are characteristic of this tumor type. Drugs that inhibit HIF2α, or its downstream targets such as VEGF, are in various stages of clinical testing. Indeed, clear cell renal carcinomas are exquisitely sensitive to VEGF deprivation and four VEGF inhibitors have now been approved for the treatment of this disease.
PMCID: PMC3663044  PMID: 22705278
Kidney Cancer; von-Hippel-Lindau; hypoxia; angiogenesis; VEGF
14.  Use and Abuse of RNAi to Study Mammalian Gene Function 
Science (New York, N.Y.)  2012;337(6093):421-422.
PMCID: PMC3705935  PMID: 22837515
15.  Reactivation of Hepatic EPO Synthesis in Mice After PHD Loss 
Science (New York, N.Y.)  2010;329(5990):407.
PMCID: PMC3668543  PMID: 20651146
16.  Transformation by the R Enantiomer of 2-Hydroxyglutarate Linked to EglN Activation 
Nature  2012;483(7390):484-488.
The identification of succinate dehydrogenase (SDH), fumarate hydratase (FH), and isocitrate dehydrogenase (IDH) mutations in human cancers has rekindled the idea that altered cellular metabolism can transform cells. Inactivating SDH and FH mutations cause the accumulation of succinate and fumarate, respectively, which can inhibit 2-oxoglutarate (2-OG)-dependent enzymes, including the EglN prolyl 4-hydroxylases that mark the HIF transcription factor for polyubiquitylation and proteasomal degradation 1. Inappropriate HIF activation is suspected of contributing to the pathogenesis of SDH-defective and FH-defective tumors but can suppress tumor growth in some other contexts. IDH1 and IDH2, which catalyze the interconversion of isocitrate and 2-OG, are frequently mutated in human brain tumors and leukemias. The resulting mutants display the neomorphic ability to convert 2-OG to the R-enantiomer of 2-hydroxyglutarate (R-2HG) 2, 3. Here we show that R-2HG, but not S-2HG, stimulates EglN activity leading to diminished HIF levels, which enhances the proliferation and soft agar growth of human astrocytes.
PMCID: PMC3656605  PMID: 22343896
17.  New Insights into the Biology of Renal Cell Carcinoma 
Kidney cancer is one of the 10 most common forms of cancer in both men and women. Ninety percent or more of these cancers are believed to be of epithelial cell origin, and are referred to as renal cell carcinoma (RCC). RCCs can be further subdivided, based on their histologic appearance, into clear-cell renal carcinomas (~75%), papillary renal carcinomas (15%), chromophobe tumors (5%), and oncocytomas (5%).1,2 Studies of hereditary kidney cancer families led to the identification of genes that, when mutated in the germline, confer an increased risk of these various histologic RCC subtypes and hence a glimpse at the molecular circuits that are deregulated in these different forms of RCC.2 In practice, there is some overlap among the histologic subtypes (eg, a tumor with predominantly clear-cell features might contain areas more typical of papillary RCC). Similarly, there are some shared molecular features among these tumor types (see later discussion). This review focuses primarily on the most common form of RCC, clear-cell renal carcinoma, while making note of some recent advances in the other histologic subtypes.
PMCID: PMC3161447  PMID: 21763962
Renal cell carcinoma; Clear-cell renal carcinoma; Hypoxia-inducible factor; HIF-responsive gene products
18.  Clinical and functional properties of novel VHL mutation (X214L) consistent with Type 2A phenotype and low risk of renal cell carcinoma 
Clinical genetics  2011;79(6):539-545.
This report describes clinical characteristics in families with a Type 2A phenotype and functional properties of a novel von Hippel Lindau variant (X214L).
Pedigrees were analyzed. Analysis of VHL coding exons and flanking intronic sequences in DNA from a proband with pheochromocytoma and islet cell tumor was performed. Western blot assays for pVHL, HIFα and Jun B were conducted using VHL null renal clear carcinoma cell lines that were engineered to produce wild type or X214L mutant pVHL.
Pedigree analysis indicated that the variant tracked with disease. The same or similar VHL point mutations were identified in several Type 2A families. The predicted 14 amino acid extended pVHL variant, when reintroduced into VHL null cells, was stable and retained the ability to downregulate HIFα in a hydroxylation-dependent manner. In contrast, the variant was defective with respect to downregulation of JunB.
pVHL X214L, like other pVHL variants associated with a low risk of clear cell renal carcinoma, largely preserves the ability to downregulate HIF. In contrast, this variant, like other pVHL variants linked to Type 2A disease, fails to suppress JunB. This underscores that JunB may play a role in the pathogenesis of Type 2A VHL disease.
PMCID: PMC2958253  PMID: 20560986
germ-line mutation; HIF; Jun B; neuroendocrine; pheochromocytoma; von Hippel Lindau
19.  Genetic and Functional Studies Implicate HIF1α as a 14q Kidney Cancer Suppressor Gene 
Cancer discovery  2011;1(3):222-235.
Kidney cancers often delete chromosome 3p, spanning the VHL tumor suppressor gene, and chromosome 14q, which presumably harbors one or more tumor suppressor genes. pVHL inhibits the HIF transcription factor and HIF2α is a kidney cancer oncoprotein. Here we identify focal, homozygous, deletions of the HIF1α locus on 14q in clear cell renal carcinoma cell lines. Wild-type HIF1α, but not the products of these altered loci, suppress renal carcinoma growth. Conversely, downregulation of HIF1α in HIF1α-proficient lines promote tumor growth. HIF1α activity is diminished in 14q deleted kidney cancers and all of the somatic HIF1α mutations identified in kidney cancers tested to date are loss of function. Therefore HIF1α has the credentials of a kidney cancer suppressor gene.
PMCID: PMC3202343  PMID: 22037472
14q deletion; HIF1α; kidney cancer; tumor suppression; von Hippel-Lindau; hypoxia
20.  FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis 
Cancer cell  2010;18(5):472-484.
mTORC1 is a validated therapeutic target for renal cell carcinoma (RCC). Here, analysis of Tsc1 deficient (mTORC1 hyperactivation) mice uncovered a FoxO-dependent negative feedback circuit constraining mTORC1-mediated renal tumorigenesis. We document robust FoxO activation in Tsc1 deficient benign polycystic kidneys and FoxO extinction upon progression to murine renal tumors; murine renal tumor progression upon genetic deletion of both Tsc1 and FoxOs; and down-regulated FoxO expression in most human renal clear cell and papillary carcinomas, yet continued expression in less aggressive RCCs and benign renal tumor subtypes. Mechanistically, integrated analyses revealed that FoxO-mediated block operates via suppression of Myc through up-regulation of the Myc antagonists, Mxi1-SRα and mir-145, establishing a FoxO-Mxi1-SRα/mir-145 axis as a major progression block in renal tumor development.
PMCID: PMC3023886  PMID: 21075312
21.  Phosphorylation by Casein Kinase I Promotes the Turnover of the Mdm2 Oncoprotein via the SCFβ-TRCP Ubiquitin Ligase 
Cancer cell  2010;18(2):147-159.
Mdm2 is the major negative regulator of the p53 pathway. Here we report that Mdm2 is rapidly degraded after DNA damage and that phosphorylation of Mdm2 by Casein Kinase I (CKI) at multiple sites triggers its interaction with, and subsequent ubiquitination and destruction, by SCFβ-TRCP. Inactivation of either β-TRCP or CKI results in accumulation of Mdm2 and decreased p53 activity, and resistance to apoptosis induced by DNA damaging-agents. Moreover, SCFβ-TRCP-dependent Mdm2 turnover also contributes to the control of repeated p53 pulses in response to persistent DNA damage. Our results provide insight into the signaling pathways controlling Mdm2 destruction and further suggest that compromised regulation of Mdm2 results in attenuated p53 activity, thereby facilitating tumor progression.
PMCID: PMC2923652  PMID: 20708156
22.  HIF hydroxylation and the mammalian oxygen-sensing pathway 
Journal of Clinical Investigation  2003;111(6):779-783.
PMCID: PMC153778  PMID: 12639980
23.  A role for mammalian Sin3 in permanent gene silencing 
Molecular cell  2008;32(3):359-370.
The multi-subunit Sin3 co-repressor complex regulates gene transcription through deacetylation of nucleosomes. However, the full range of Sin3 activities and targets is not well understood. Here, we have investigated genome-wide binding of mouse Sin3 and RBP2 as well as histone modifications and nucleosome positioning as a function of myogenic differentiation. Remarkably, we find that Sin3 complexes spread immediately downstream of the transcription start site on repressed and transcribed genes during differentiation. We show that RBP2 is part of a Sin3 complex, and on a subset of E2F4 target genes, the coordinated activity of Sin3 and RBP2 leads to deacetylation, demethylation, and repositioning of nucleosomes. Our work provides evidence for coordinated binding of Sin3, chromatin modifications, and chromatin remodeling within discrete regulatory regions, suggesting a model in which spreading of Sin3 binding is ultimately linked to permanent gene silencing on a subset of E2F4 target genes.
PMCID: PMC3100182  PMID: 18995834
24.  Mutation analysis of HIF prolyl hydroxylases (PHD/EGLN) in individuals with features of phaeochromocytoma and renal cell carcinoma susceptibility 
Endocrine-Related Cancer  2011;18(1):73-83.
Germline mutations in the von Hippel–Lindau disease (VHL) and succinate dehydrogenase subunit B (SDHB) genes can cause inherited phaeochromocytoma and/or renal cell carcinoma (RCC). Dysregulation of the hypoxia-inducible factor (HIF) transcription factors has been linked to VHL and SDHB-related RCC; both HIF dysregulation and disordered function of a prolyl hydroxylase domain isoform 3 (PHD3/EGLN3)-related pathway of neuronal apoptosis have been linked to the development of phaeochromocytoma. The 2-oxoglutarate-dependent prolyl hydroxylase enzymes PHD1 (EGLN2), PHD2 (EGLN1) and PHD3 (EGLN3) have a key role in regulating the stability of HIF-α subunits (and hence expression of the HIF-α transcription factors). A germline PHD2 mutation has been reported in association with congenital erythrocytosis and recurrent extra-adrenal phaeochromocytoma. We undertook mutation analysis of PHD1, PHD2 and PHD3 in two cohorts of patients with features of inherited phaeochromocytoma (n=82) and inherited RCC (n=64) and no evidence of germline mutations in known susceptibility genes. No confirmed pathogenic mutations were detected suggesting that mutations in these genes are not a frequent cause of inherited phaeochromocytoma or RCC.
PMCID: PMC3006001  PMID: 20959442
25.  Synthetic peptides define critical contacts between elongin C, elongin B, and the von Hippel-Lindau protein 
Journal of Clinical Investigation  1999;104(11):1583-1591.
The von Hippel-Lindau tumor suppressor protein (pVHL) negatively regulates hypoxia-inducible mRNAs such as the mRNA encoding vascular endothelial growth factor (VEGF). This activity has been linked to its ability to form multimeric complexes that contain elongin C, elongin B, and Cul2. To understand this process in greater detail, we performed a series of in vitro binding assays using pVHL, elongin B, and elongin C variants as well as synthetic peptide competitors derived from pVHL or elongin C. A subdomain of elongin C (residues 17–50) was necessary and sufficient for detectable binding to elongin B. In contrast, elongin B residues required for binding to elongin C were not confined to a discrete colinear domain. We found that the pVHL (residues 157–171) is necessary and sufficient for binding to elongin C in vitro and is frequently mutated in families with VHL disease. These mutations preferentially involve residues that directly bind to elongin C and/or alter the conformation of pVHL such that binding to elongin C is at least partially diminished. These results are consistent with the view that diminished binding of pVHL to the elongins plays a causal role in VHL disease.
J. Clin. Invest. 104:1583–1591 (1999).
PMCID: PMC481054  PMID: 10587522

Results 1-25 (48)