Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Human Cancer Long Non-Coding RNA Transcriptomes 
PLoS ONE  2011;6(10):e25915.
Once thought to be a part of the ‘dark matter’ of the genome, long non-coding RNAs (lncRNAs) are emerging as an integral functional component of the mammalian transcriptome. LncRNAs are a novel class of mRNA-like transcripts which, despite no known protein-coding potential, demonstrate a wide range of structural and functional roles in cellular biology. However, the magnitude of the contribution of lncRNA expression to normal human tissues and cancers has not been investigated in a comprehensive manner. In this study, we compiled 272 human serial analysis of gene expression (SAGE) libraries to delineate lncRNA transcription patterns across a broad spectrum of normal human tissues and cancers. Using a novel lncRNA discovery pipeline we parsed over 24 million SAGE tags and report lncRNA expression profiles across a panel of 26 different normal human tissues and 19 human cancers. Our findings show extensive, tissue-specific lncRNA expression in normal tissues and highly aberrant lncRNA expression in human cancers. Here, we present a first generation atlas for lncRNA profiling in cancer.
PMCID: PMC3185064  PMID: 21991387
2.  The functional role of long non-coding RNA in human carcinomas 
Molecular Cancer  2011;10:38.
Long non-coding RNAs (lncRNAs) are emerging as new players in the cancer paradigm demonstrating potential roles in both oncogenic and tumor suppressive pathways. These novel genes are frequently aberrantly expressed in a variety of human cancers, however the biological functions of the vast majority remain unknown. Recently, evidence has begun to accumulate describing the molecular mechanisms by which these RNA species function, providing insight into the functional roles they may play in tumorigenesis. In this review, we highlight the emerging functional role of lncRNAs in human cancer.
PMCID: PMC3098824  PMID: 21489289
3.  Deciphering Squamous Cell Carcinoma Using Multidimensional Genomic Approaches 
Journal of Skin Cancer  2010;2011:541405.
Squamous cell carcinomas (SqCCs) arise in a wide range of tissues including skin, lung, and oral mucosa. Although all SqCCs are epithelial in origin and share common nomenclature, these cancers differ greatly with respect to incidence, prognosis, and treatment. Current knowledge of genetic similarities and differences between SqCCs is insufficient to describe the biology of these cancers, which arise from diverse tissue origins. In this paper we provide a general overview of whole genome approaches for gene and pathway discovery and highlight the advancement of integrative genomics as a state-of-the-art technology in the study of SqCC genetics.
PMCID: PMC3017908  PMID: 21234096
4.  Mobile DNA elements in T4 and related phages 
Virology Journal  2010;7:290.
Mobile genetic elements are common inhabitants of virtually every genome where they can exert profound influences on genome structure and function in addition to promoting their own spread within and between genomes. Phage T4 and related phage have long served as a model system for understanding the molecular mechanisms by which a certain class of mobile DNA, homing endonucleases, promote their spread. Homing endonucleases are site-specific DNA endonucleases that initiate mobility by introducing double-strand breaks at defined positions in genomes lacking the endonuclease gene, stimulating repair and recombination pathways that mobilize the endonuclease coding region. In phage T4, homing endonucleases were first discovered as encoded within the self-splicing td, nrdB and nrdD introns of T4. Genomic data has revealed that homing endonucleases are extremely widespread in T-even-like phage, as evidenced by the astounding fact that ~11% of the T4 genome encodes homing endonuclease genes, with most of them located outside of self-splicing introns. Detailed studies of the mobile td intron and its encoded endonuclease, I-TevI, have laid the foundation for genetic, biochemical and structural aspects that regulate the mobility process, and more recently have provided insights into regulation of homing endonuclease function. Here, we summarize the current state of knowledge regarding T4-encoded homing endonucleases, with particular emphasis on the td/I-TevI model system. We also discuss recent progress in the biology of free-standing endonucleases, and present areas of future research for this fascinating class of mobile genetic elements.
PMCID: PMC2988022  PMID: 21029434
5.  An RNA Hairpin Sequesters the Ribosome Binding Site of the Homing Endonuclease mobE Gene▿  
Journal of Bacteriology  2009;191(7):2409-2413.
Previous transcript mapping of the bacteriophage Aeh1 nrd operon revealed a predicted RNA hairpin upstream of the homing endonuclease mobE gene. We enzymatically mapped the hairpin, showing that the mobE ribosome binding site is sequestered. Cloning of the hairpin upstream of lacZ resulted in reduced β-galactosidase activity, consistent with translational regulation.
PMCID: PMC2655525  PMID: 19181807
6.  Multiple Controls Regulate the Expression of mobE, an HNH Homing Endonuclease Gene Embedded within a Ribonucleotide Reductase Gene of Phage Aeh1▿  
Journal of Bacteriology  2007;189(13):4648-4661.
Mobile genetic elements have the potential to influence the expression of genes surrounding their insertion site upon invasion of a genome. Here, we examine the transcriptional organization of a ribonucleotide reductase operon (nrd) that has been invaded by an HNH family homing endonuclease, mobE. In Aeromonas hydrophila phage Aeh1, mobE has inserted into the large-subunit gene (nrdA) of aerobic ribonucleotide reductase (RNR), splitting it into two smaller genes, nrdA-a and nrdA-b. This gene organization differs from that in phages T4, T6, RB2, RB3, RB15, and LZ7, where mobE is inserted in the nrdA-nrdB intergenic region. We present evidence that the expression of Aeh1 mobE is regulated by transcriptional, posttranscriptional, and translational controls. An Aeh1-specific late promoter drives expression of mobE, but strikingly the mobE transcript is processed internally at an RNase E-like site. We also identified a putative stem-loop structure upstream of mobE that sequesters the mobE ribosome binding site, presumably acting to down regulate MobE translation. Moreover, our transcriptional analyses indicate that the surrounding nrd genes of phage Aeh1 are expressed by a different strategy than are the corresponding phage T4 genes and that transcriptional readthrough is the only mechanism by which the promoterless Aeh1 nrdB gene is expressed. We suggest that the occurrence of multiple layers of control to limit the expression of mobE to late in the Aeh1 infection cycle is an adaptation of Aeh1 to reduce any effects on expression of the surrounding nrd genes early in phage infection when RNR function is critical.
PMCID: PMC1913452  PMID: 17449612

Results 1-6 (6)