Search tips
Search criteria

Results 1-15 (15)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Human lung epithelial cells progressed to malignancy through specific oncogenic manipulations 
Molecular cancer research : MCR  2013;11(6):638-650.
We used CDK4/hTERT-immortalized normal human bronchial epithelial cells (HBECs) from several individuals to study lung cancer pathogenesis by introducing combinations of common lung cancer oncogenic changes (p53, KRAS, MYC) and followed the stepwise transformation of HBECs to full malignancy. This model demonstrated that: 1) the combination of five genetic alterations (CDK4, hTERT, sh-p53, KRASV12, and c-MYC) is sufficient for full tumorigenic conversion of HBECs; 2) genetically-identical clones of transformed HBECs exhibit pronounced differences in tumor growth, histology, and differentiation; 3) HBECs from different individuals vary in their sensitivity to transformation by these oncogenic manipulations; 4) high levels of KRASV12 are required for full malignant transformation of HBECs, however prior loss of p53 function is required to prevent oncogene-induced senescence; 5) over-expression of c-MYC greatly enhances malignancy but only in the context of sh-p53+KRASV12; 6) growth of parental HBECs in serum-containing medium induces differentiation while growth of oncogenically manipulated HBECs in serum increases in vivo tumorigenicity, decreases tumor latency, produces more undifferentiated tumors, and induces epithelial-to-mesenchymal transition (EMT); 7) oncogenic transformation of HBECs leads to increased sensitivity to standard chemotherapy doublets; 8) an mRNA signature derived by comparing tumorigenic vs. non-tumorigenic clones was predictive of outcome in lung cancer patients. Collectively, our findings demonstrate this HBEC model system can be used to study the effect of oncogenic mutations, their expression levels, and serum-derived environmental effects in malignant transformation, while also providing clinically translatable applications such as development of prognostic signatures and drug response phenotypes.
PMCID: PMC3687022  PMID: 23449933
p53; KRAS; c-MYC; immortalized human bronchial epithelial cell; in vitro transformation model of lung cancer; epithelial mesenchymal transition
2.  The circadian clock gene BMAL1 is a novel therapeutic target for malignant pleural mesothelioma 
Malignant pleural mesothelioma (MPM) is a highly aggressive neoplasm arising from the mesothelial cells lining the parietal pleura and it exhibits poor prognosis. Although there has been significant progress in MPM treatment, development of more efficient therapeutic approaches is needed. BMAL1 is a core component of the circadian clock machinery and its constitutive overexpression in MPM has been reported. Here, we demonstrate that BMAL1 may serve as a molecular target for MPM. The majority of MPM cell lines and a subset of MPM clinical specimens expressed higher levels of BMAL1 compared to a nontumorigenic mesothelial cell line (MeT-5A) and normal parietal pleural specimens, respectively. A serum shock induced a rhythmical BMAL1 expression change in MeT-5A but not in ACC-MESO-1, suggesting that the circadian rhythm pathway is deregulated in MPM cells. BMAL1 knockdown suppressed proliferation and anchorage-dependent and independent clonal growth in two MPM cell lines (ACC-MESO-1 and H290) but not in MeT-5A. Notably, BMAL1 depletion resulted in cell cycle disruption with a substantial increase in apoptotic and polyploidy cell population in association with downregulation of Wee1, cyclin B and p21WAF1/CIP1 and upregulation of cyclin E expression. BMAL1 knockdown induced mitotic catastrophe as denoted by disruption of cell cycle regulators and induction of drastic morphological changes including micronucleation and multiple nuclei in ACC-MESO-1 cells that expressed the highest level of BMAL1. Taken together, these findings indicate that BMAL1 has a critical role in MPM and could serve as an attractive therapeutic target for MPM.
PMCID: PMC3479344  PMID: 22510946
apoptosis; BMAL1; mesothelioma; targeted therapy; mitotic catastrophe
3.  EGFR-T790M Is a Rare Lung Cancer Susceptibility Allele with Enhanced Kinase Activity 
Cancer research  2007;67(10):4665-4670.
The use of tyrosine kinase inhibitors (TKI) has yielded great success in treatment of lung adenocarcinomas. However, patients who develop resistance to TKI treatment often acquire a somatic resistance mutation (T790M) located in the catalytic cleft of the epidermal growth factor receptor (EGFR) enzyme. Recently, a report describing EGFR-T790M as a germ-line mutation suggested that this mutation may be associated with inherited susceptibility to lung cancer. Contrary to previous reports, our analysis indicates that the T790M mutation confers increased Y992 and Y1068 phosphorylation levels. In a human bronchial epithelial cell line, overexpression of EGFR-T790M displayed a growth advantage over wild-type (WT) EGFR. We also screened 237 lung cancer family probands, in addition to 45 bronchoalveolar tumors, and found that none of them contained the EGFR-T790M mutation. Our observations show that EGFR-T790M provides a proliferative advantage with respect to WT EGFR and suggest that the enhanced kinase activity of this mutant is the basis for rare cases of inherited susceptibility to lung cancer.
PMCID: PMC3460269  PMID: 17510392
4.  STIM1 Regulates Platelet-Derived Growth Factor-Induced Migration and Ca2+ Influx in Human Airway Smooth Muscle Cells 
PLoS ONE  2012;7(9):e45056.
It is suggested that migration of airway smooth muscle (ASM) cells plays an important role in the pathogenesis of airway remodeling in asthma. Increases in intracellular Ca2+ concentrations ([Ca2+]i) regulate most ASM cell functions related to asthma, such as contraction and proliferation. Recently, STIM1 was identified as a sarcoplasmic reticulum (SR) Ca2+ sensor that activates Orai1, the Ca2+ channel responsible for store-operated Ca2+ entry (SOCE). We investigated the role of STIM1 in [Ca2+]i and cell migration induced by platelet-derived growth factor (PDGF)-BB in human ASM cells. Cell migration was assessed by a chemotaxis chamber assay. Human ASM cells express STIM1, STIM2, and Orai1 mRNAs. SOCE activated by thapsigargin, an inhibitor of SR Ca2+-ATPase, was significantly blocked by STIM1 siRNA and Orai1 siRNA but not by STIM2 siRNA. PDGF-BB induced a transient increase in [Ca2+]i followed by sustained [Ca2+]i elevation. Sustained increases in [Ca2+]i due to PDGF-BB were significantly inhibited by a Ca2+ chelating agent EGTA or by siRNA for STIM1 or Orai1. The numbers of migrating cells were significantly increased by PDGF-BB treatment for 6 h. Knockdown of STIM1 and Orai1 by siRNA transfection inhibited PDGF-induced cell migration. Similarly, EGTA significantly inhibited PDGF-induced cell migration. In contrast, transfection with siRNA for STIM2 did not inhibit the sustained elevation of [Ca2+]i or cell migration induced by PDGF-BB. These results demonstrate that STIM1 and Orai1 are essential for PDGF-induced cell migration and Ca2+ influx in human ASM cells. STIM1 could be an important molecule responsible for airway remodeling.
PMCID: PMC3439366  PMID: 22984609
5.  Transient but Not Stable ZEB1 Knockdown Dramatically Inhibits Growth of Malignant Pleural Mesothelioma Cells 
Annals of surgical oncology  2011;19(Suppl 3):634-645.
The role of ZEB1, a master epithelial-tomesenchymal transition gene, in malignant pleural mesothelioma (MPM) is unclear.
The expression of ZEB1, E-cadherin, vimentin, and epithelial cell adhesion molecule (EpCAM) in 18 MPM cell lines and a normal pleural mesothelial cell line MeT-5A was determined by quantitative real-time polymerase chain reaction and Western blot testing. RNA interference–mediated transient and/or stable knockdown of ZEB1 and EpCAM was performed. Microarray expression analysis was performed with a TORAY-3D gene chip. Growth was evaluated by colorimetric proliferation and colony formation assays. Luciferase reporter assay was performed to access the effects of ZEB1 knockdown on EpCAM promoter activity.
Most MPM cell lines exhibited mesenchymal phenotype and expressed ZEB1. Transient ZEB1 knockdown suppressed growth in all four cell lines studied (ACC-MESO-1, H2052, Y-MESO-8A, Y-MESO-29) while stable ZEB1 knockdown suppressed growth only in Y-MESO-29. Genome-wide gene expression analysis revealed that EpCAM was the most prominently up-regulated gene by both transient and stable ZEB1 knockdown in ACC-MESO-1, with more marked up-regulation in stable knockdown. We hypothesized that EpCAM up-regulation counteracts the stable ZEB1 knockdown-induced growth inhibition in ACC-MESO-1. Transient EpCAM knockdown suppressed growth dramatically in ACC-MESO-1 cells expressing shZEB1 but only modestly in those expressing shGFP, supporting our hypothesis. Luciferase reporter assay showed that ZEB1 knockdown resulted in increased EpCAM promoter activity. EpCAM was also up-regulated in Y-MESO-29 expressing shZEB1, but this EpCAM up-regulation did not counteract ZEB1 knockdown-induced growth suppression, suggesting that the counteracting effects of EpCAM may be cellular context dependent.
RNA interference-mediated ZEB1 knockdown may be a promising therapeutic strategy for MPM, but one has to consider the possibility of diminished growth inhibitory effects of long-term ZEB1 knockdown, possibly as a result of EpCAM up-regulation and/or other gene expression changes resulting from ZEB1 knockdown.
PMCID: PMC3413790  PMID: 22086445
6.  Pivotal role of epithelial cell adhesion molecule in the survival of lung cancer cells 
Cancer Science  2011;102(8):1493-1500.
Epithelial cell adhesion molecule (EpCAM) is overexpressed in a wide variety of human cancers including lung cancer, and its contribution to increased proliferation through upregulation of cell cycle accelerators such as cyclins A and E has been well established in breast and gastric cancers. Nevertheless, very little is known about its role in supporting the survival of cancer cells. In addition, the functional role of EpCAM in the pathogenesis of lung cancer remains to be explored. In this study, we show that RNAi-mediated knockdown of EpCAM suppresses proliferation and clonogenic growth of three EpCAM-expressing lung cancer cell lines (H3255, H358, and HCC827), but does not induce cell cycle arrest in any of these. In addition, EpCAM knockdown inhibits invasion in the highly invasive H358 but not in less invasive H3255 cells in a Transwell assay. Of note, the EpCAM knockdown induces massive apoptosis in the three cell lines as well as in another EpCAM-expressing lung cancer cell line, HCC2279, but to a much lesser extent in a cdk4/hTERT immortalized normal human bronchial epithelial cell line, HBEC4, suggesting that EpCAM could be a therapeutic target for lung cancer. Finally, EpCAM knockdown partially restores contact inhibition in HCC827, in association with p27Kip1 upregulation. These results indicate that EpCAM could contribute substantially to the pathogenesis of lung cancer, especially cancer cell survival, and suggest that EpCAM targeted therapy for lung cancer may have potential.
PMCID: PMC3381954  PMID: 21535318
7.  Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer 
The CXC chemokine interleukin-8 (IL-8) is an angiogenic growth factor that is overexpressed in various cancers, including non-small cell lung cancer (NSCLC). Previously, IL-8 was shown as a transcriptional target of RAS signaling, raising the possibility of its role in oncogenic KRAS-driven NSCLC. Using microarray analysis, we identified IL-8 as the most downregulated gene by shRNA-mediated KRAS knockdown in NCI-H1792 NSCLC cells where IL-8 is overexpressed. NSCLC cell lines harboring KRAS or EGFR mutations overexpressed IL-8, while IL-8 levels were more prominent in KRAS mutants compared to EGFR mutants. IL-8 expression was downregulated by shRNA-mediated KRAS knockdown in KRAS mutants or by treatment with EGFR tyrosine kinase inhibitors and EGFR siRNAs in EGFR mutants. In our analysis of the relationship of IL-8 expression with clinical parameters and mutation status of KRAS or EGFR in 89 NSCLC surgical specimens, IL-8 expression was shown to be significantly higher in NSCLCs of males, smokers, and elderly patients and those with pleural involvement and KRAS mutated adenocarcinomas. In KRAS mutant cells, the MEK inhibitor markedly decreased IL-8 expression, while the p38 inhibitor increased IL-8 expression. Attenuation of IL-8 function by siRNAs or a neutralizing antibody inhibited cell proliferation and migration of KRAS mutant/IL-8 overexpressing NSCLC cells. These results indicate that activating mutations of KRAS or EGFR upregulate IL-8 expression in NSCLC; IL-8 is highly expressed in NSCLCs from males, smokers, elderly patients, NSCLCs with pleural involvement, and KRAS-mutated adenocarcinomas; and IL-8 plays a role in cell growth and migration in oncogenic KRAS-driven NSCLC.
PMCID: PMC3374723  PMID: 21544811
non-small cell lung cancer; KRAS; interleukin-8; molecular target
8.  Knockdown of Oncogenic KRAS in Non-Small Cell Lung Cancers Suppresses Tumor Growth and Sensitizes Tumor Cells to Targeted Therapy 
Molecular cancer therapeutics  2011;10(2):336-346.
Oncogenic KRAS is found in >25% of lung adenocarcinomas, the major histologic subtype of non-small cell lung cancer (NSCLC), and is an important target for drug development. To this end, we generated four NSCLC lines with stable knockdown selective for oncogenic KRAS. As expected, stable knockdown of oncogenic KRAS led to inhibition of in vitro and in vivo tumor growth in the KRAS mutant NSCLC cells, but not in NSCLC cells that have wild-type KRAS (but mutant NRAS). Surprisingly, we did not see large-scale induction of cell death and the growth inhibitory effect was not complete. To further understand the ability of NSCLCs to grow despite selective removal of mutant KRAS expression, we performed microarray expression profiling of NSCLC cell lines with or without mutant KRAS knockdown and isogenic human bronchial epithelial cell lines (HBECs) with and without oncogenic KRAS. We found that while the MAPK pathway is significantly down-regulated after mutant KRAS knockdown, these NSCLCs showed increased levels of phospho-STAT3 and phospho-EGFR, and variable changes in phospho-Akt. In addition, mutant KRAS knockdown sensitized the NSCLCs to p38 and EGFR inhibitors. Our findings suggest that targeting oncogenic KRAS by itself will not be sufficient treatment but may offer possibilities of combining anti-KRAS strategies with other targeted drugs.
PMCID: PMC3061393  PMID: 21306997
9.  Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells 
Cancer letters  2010;296(2):216-224.
We found that among four master epithelial-to-mesenchymal transition (EMT)-inducing genes (ZEB1, SIP1, Snail, and Slug) ZEB1expression was most significantly correlated with the mesenchymal phenotype (high Vimentin and low E-cadherin expression) in non-small cell lung cancer (NSCLC) cell lines and tumors. Furthermore, ZEB1 knockdown with RNA interference in three NSCLC cell lines with high ZEB1 expression suppressed to varying degrees mass culture growth and liquid colony formation but in all cases dramatically suppressed soft agar colony formation. In addition, ZEB1 knockdown induced apoptosis in one of the three lines, indicating that the growth inhibitory effects of ZEB1 knockdown occurs in part through the activation of the apoptosis pathway. These results suggest that inhibiting ZEB1 function may be an attractive target for NSCLC therapeutic development.
PMCID: PMC3110825  PMID: 20452118
Lung cancer; Epidermal growth factor receptor; Anchorage-independent growth; EMT; MicroRNA; RNA interference
10.  PIK3CA Mutations and Copy Number Gains in Human Lung Cancers 
Cancer research  2008;68(17):6913-6921.
We investigated the frequency and function of mutations and increased copy number of the PIK3CA gene in lung cancers. PIK3CA mutations are one of the most common gene changes present in human cancers. We analyzed the mutational status of exons 9 and 20 and gene copy number of PIK3CA using 86 non–small cell lung cancer (NSCLC) cell lines, 43 small cell lung cancer (SCLC) cell lines, 3 extrapulmonary small cell cancer (ExPuSC) cell lines, and 691 resected NSCLC tumors and studied the relationship between PIK3CA alterations and mutational status of epidermal growth factor receptor (EGFR) signaling pathway genes (EGFR, KRAS, HER2, and BRAF). We also determined PIK3CA expression and activity and correlated the findings with effects on cell growth. We identified mutations in 4.7% of NSCLC cell lines and 1.6% of tumors of all major histologic types. Mutations in cell lines of small cell origin were limited to two ExPuSC cell lines. PIK3CA copy number gains were more frequent in squamous cell carcinoma (33.1%) than in adenocarcinoma (6.2%) or SCLC lines (4.7%). Mutational status of PIK3CA was not mutually exclusive to EGFR or KRAS. PIK3CA alterations were associated with increased phosphatidylinositol 3-kinase activity and phosphorylated Akt expression. RNA interference–mediated knockdown of PIK3CA inhibited colony formation of cell lines with PIK3CA mutations or gains but was not effective in PIK3CA wild-type cells. PIK3CA mutations or gains are present in a subset of lung cancers and are of functional importance.
PMCID: PMC2874836  PMID: 18757405
11.  Epidermal Growth Factor Receptors with Tyrosine Kinase Domain Mutations Exhibit Reduced Cbl Association, Poor Ubiquitylation, and Down-regulation but Are Efficiently Internalized 
Cancer research  2007;67(16):7695-7702.
Some non–small cell lung cancers (NSCLC) with epidermal growth factor receptor (EGFR) tyrosine kinase domain mutations require altered signaling through the EGFR for cell survival and are exquisitely sensitive to tyrosine kinase inhibitors. EGFR down-regulation was impaired in two NSCLCs with EGFR tyrosine kinase domain mutations. The mutant receptors were poorly ubiquitylated and exhibited decreased association with the ubiquitin ligase Cbl. Over-expression of Cbl increased the degradation of EGFR. Treatment with geldanamycin, an inhibitor of the chaperone heat shock protein 90, also increased both wild-type and mutant EGFR degradation without affecting internalization. The down-regulation of the mutant EGFRs was still impaired when they were stably expressed in normal human bronchial epithelial cells. Thus, the mutations that altered signaling also decreased the interaction of EGFRs with the mechanisms responsible for endosomal sorting.
PMCID: PMC2852256  PMID: 17699773
12.  Pten Inactivation Accelerates Oncogenic K-ras-Initiated Tumorigenesis in a Mouse Model of Lung Cancer 
Cancer research  2008;68(4):1119-1127.
Phosphatase and tensin homologue deleted from chromosome 10 (Pten) is expressed aberrantly in non-small cell lung cancer cells, but the role of Pten in lung neoplasia has not been fully elucidated. In this study, we used a genetic approach to inactivate Pten in the bronchial epithelium of mice. Although, by itself, Pten inactivation had no discernible effect on bronchial epithelial histology, it accelerated lung tumorigenesis initiated by oncogenic K-ras, causing more rapid lethality than that induced by oncogenic K-ras alone (8 weeks versus 24 weeks of median duration of survival, respectively). Lung tumors arose in K-ras mutant, Pten-deficient mice that rapidly obstructed bronchial lumina and replaced alveolar spaces. Relative to K-ras mutant tumors, the K-ras mutant, Pten-deficient tumors exhibited more advanced histologic severity and more prominent inflammation and vascularity. Thus, Pten inactivation cooperated with oncogenic K-ras in promoting lung tumorigenesis.
PMCID: PMC2750029  PMID: 18281487
13.  EGFR Signaling Is Required for TGF-β1–Mediated COX-2 Induction in Human Bronchial Epithelial Cells 
Cyclooxygenase-2 (COX-2) is a key enzyme in the production of prostaglandins and thromboxanes from free arachidonic acid. Increasing evidence suggests that COX-2 plays a role in tumorigenesis. A variety of stimuli induce COX-2 and it is overexpressed in many tumors, including non–small cell lung cancer (NSCLC). We studied the regulation of COX-2 expression in immortalized human bronchial epithelial cells (HBECs) by transforming growth factor-β1 (TGF-β1) and epidermal growth factor (EGF) because these two growth factors are present in both the pulmonary milieu of those at risk for lung cancer as well as in the tumor microenvironment. EGF significantly enhanced TGF-β1–mediated induction of COX-2 and corresponding prostaglandin E2 (PGE2) production. TGF-β1 and EGF induced COX-2 at the transcriptional and post-transcriptional levels. EGF receptor (EGFR) inhibition, neutralizing antibody against amphiregulin, or mitogen-activated protein kinase kinase (MEK) inhibition blocked TGF-β1–mediated COX-2 induction. COX-2 induction by TGF-β1 depended upon Smad3 signaling and required the activity of EGFR or its downstream mediators. Autocrine amphiregulin signaling maintains EGFR in a constitutively active state in HBECs, allowing for COX-2 induction by TGF-β1. Thus, EGFR ligands, which are abundant in the pulmonary microenvironment of those at risk for lung cancer, potentiate and are required for COX-2 induction by TGF-β1 in HBEC. These findings emphasize the central role of EGFR signaling in COX-2 induction by TGF-β1 and suggest that inhibition of EGFR signaling should be investigated further for lung cancer prevention.
PMCID: PMC2048680  PMID: 17600311
cyclooxygenase-2; transforming growth factor-β1; epidermal growth factor receptor; lung cancer; Smad3
14.  Characterizing the cancer genome in lung adenocarcinoma 
Nature  2007;450(7171):893-898.
Somatic alterations in cellular DNA underlie almost all human cancers1. The prospect of targeted therapies2 and the development of high-resolution, genome-wide approaches3–8 are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumors (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in ~12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.
PMCID: PMC2538683  PMID: 17982442
15.  A Genome-Wide Screen for Promoter Methylation in Lung Cancer Identifies Novel Methylation Markers for Multiple Malignancies  
PLoS Medicine  2006;3(12):e486.
Promoter hypermethylation coupled with loss of heterozygosity at the same locus results in loss of gene function in many tumor cells. The “rules” governing which genes are methylated during the pathogenesis of individual cancers, how specific methylation profiles are initially established, or what determines tumor type-specific methylation are unknown. However, DNA methylation markers that are highly specific and sensitive for common tumors would be useful for the early detection of cancer, and those required for the malignant phenotype would identify pathways important as therapeutic targets.
Methods and Findings
In an effort to identify new cancer-specific methylation markers, we employed a high-throughput global expression profiling approach in lung cancer cells. We identified 132 genes that have 5′ CpG islands, are induced from undetectable levels by 5-aza-2′-deoxycytidine in multiple non-small cell lung cancer cell lines, and are expressed in immortalized human bronchial epithelial cells. As expected, these genes were also expressed in normal lung, but often not in companion primary lung cancers. Methylation analysis of a subset (45/132) of these promoter regions in primary lung cancer (n = 20) and adjacent nonmalignant tissue (n = 20) showed that 31 genes had acquired methylation in the tumors, but did not show methylation in normal lung or peripheral blood cells. We studied the eight most frequently and specifically methylated genes from our lung cancer dataset in breast cancer (n = 37), colon cancer (n = 24), and prostate cancer (n = 24) along with counterpart nonmalignant tissues. We found that seven loci were frequently methylated in both breast and lung cancers, with four showing extensive methylation in all four epithelial tumors.
By using a systematic biological screen we identified multiple genes that are methylated with high penetrance in primary lung, breast, colon, and prostate cancers. The cross-tumor methylation pattern we observed for these novel markers suggests that we have identified a partial promoter hypermethylation signature for these common malignancies. These data suggest that while tumors in different tissues vary substantially with respect to gene expression, there may be commonalities in their promoter methylation profiles that represent targets for early detection screening or therapeutic intervention.
John Minna and colleagues report that a group of genes are commonly methylated in primary lung, breast, colon, and prostate cancer.
Editors' Summary
Tumors or cancers contain cells that have lost many of the control mechanisms that normally regulate their behavior. Unlike normal cells, which only divide to repair damaged tissues, cancer cells divide uncontrollably. They also gain the ability to move round the body and start metastases in secondary locations. These changes in behavior result from alterations in their genetic material. For example, mutations (permanent changes in the sequence of nucleotides in the cell's DNA) in genes known as oncogenes stimulate cells to divide constantly. Mutations in another group of genes—tumor suppressor genes—disable their ability to restrain cell growth. Key tumor suppressor genes are often completely lost in cancer cells. But not all the genetic changes in cancer cells are mutations. Some are “epigenetic” changes—chemical modifications of genes that affect the amount of protein made from them. In cancer cells, methyl groups are often added to CG-rich regions—this is called hypermethylation. These “CpG islands” lie near gene promoters—sequences that control the transcription of DNA into RNA, the template for protein production—and their methylation switches off the promoter. Methylation of the promoter of one copy of a tumor suppressor gene, which often coincides with the loss of the other copy of the gene, is thought to be involved in cancer development.
Why Was This Study Done?
The rules that govern which genes are hypermethylated during the development of different cancer types are not known, but it would be useful to identify any DNA methylation events that occur regularly in common cancers for two reasons. First, specific DNA methylation markers might be useful for the early detection of cancer. Second, identifying these epigenetic changes might reveal cellular pathways that are changed during cancer development and so identify new therapeutic targets. In this study, the researchers have used a systematic biological screen to identify genes that are methylated in many lung, breast, colon, and prostate cancers—all cancers that form in “epithelial” tissues.
What Did the Researchers Do and Find?
The researchers used microarray expression profiling to examine gene expression patterns in several lung cancer and normal lung cell lines. In this technique, labeled RNA molecules isolated from cells are applied to a “chip” carrying an array of gene fragments. Here, they stick to the fragment that represents the gene from which they were made, which allows the genes that the cells express to be catalogued. By comparing the expression profiles of lung cancer cells and normal lung cells before and after treatment with a chemical that inhibits DNA methylation, the researchers identified genes that were methylated in the cancer cells—that is, genes that were expressed in normal cells but not in cancer cells unless methylation was inhibited. 132 of these genes contained CpG islands. The researchers examined the promoters of 45 of these genes in lung cancer cells taken straight from patients and found that 31 of the promoters were methylated in tumor tissues but not in adjacent normal tissues. Finally, the researchers looked at promoter methylation of the eight genes most frequently and specifically methylated in the lung cancer samples in breast, colon, and prostate cancers. Seven of the genes were frequently methylated in both lung and breast cancers; four were extensively methylated in all the tumor types.
What Do These Findings Mean?
These results identify several new genes that are often methylated in four types of epithelial tumor. The observation that these genes are methylated in multiple independent tumors strongly suggests, but does not prove, that loss of expression of the proteins that they encode helps to convert normal cells into cancer cells. The frequency and diverse patterning of promoter methylation in different tumor types also indicates that methylation is not a random event, although what controls the patterns of methylation is not yet known. The identification of these genes is a step toward building a promoter hypermethylation profile for the early detection of human cancer. Furthermore, although tumors in different tissues vary greatly with respect to gene expression patterns, the similarities seen in this study in promoter methylation profiles might help to identify new therapeutic targets common to several cancer types.
Additional Information.
Please access these Web sites via the online version of this summary at
US National Cancer Institute, information for patients on understanding cancer
CancerQuest, information provided by Emory University about how cancer develops
Cancer Research UK, information for patients on cancer biology
Wikipedia pages on epigenetics (note that Wikipedia is a free online encyclopedia that anyone can edit)
The Epigenome Network of Excellence, background information and latest news about epigenetics
PMCID: PMC1716188  PMID: 17194187

Results 1-15 (15)