PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  TAE226, a Bis-Anilino Pyrimidine Compound, Inhibits the EGFR-Mutant Kinase Including T790M Mutant to Show Anti-Tumor Effect on EGFR-Mutant Non-Small Cell Lung Cancer Cells 
PLoS ONE  2015;10(6):e0129838.
TAE226, a bis-anilino pyrimidine compound, has been developed as an inhibitor of focal adhesion kinase (FAK) and insulin-like growth factor-I receptor (IGF-IR). In this study, we investigated the effect of TAE226 on non-small-cell lung cancer (NSCLC), especially focusing on the EGFR mutational status. TAE226 was more effective against cells with mutant EGFR, including the T790M mutant, than against cells with wild-type one. TAE226 preferentially inhibited phospho-EGFR and its downstream signaling mediators in the cells with mutant EGFR than in those with wild-type one. Phosphorylation of FAK and IGF-IR was not inhibited at the concentration at which the proliferation of EGFR-mutant cells was inhibited. Results of the in vitro binding assay indicated significant differences in the affinity for TAE226 between the wild-type and L858R (or delE746_A750) mutant, and the reduced affinity of ATP to the L858R (or delE746_A750) mutant resulted in good responsiveness of the L858R (or delE746_A750) mutant cells to TAE226. Of interest, the L858R/T790M or delE746_A750/T790M mutant enhanced the binding affinity for TAE226 compared with the L858R or delE746_A750 mutant, resulting in the effectiveness of TAE226 against T790M mutant cells despite the T790M mutation restoring the ATP affinity for the mutant EGFR close to that for the wild-type. TAE226 also showed higher affinity of about 15-fold for the L858R/T790M mutant than for the wild-type one by kinetic interaction analysis. The anti-tumor effect against EGFR-mutant tumors including T790M mutation was confirmed in mouse models without any significant toxicity. In summary, we showed that TAE226 inhibited the activation of mutant EGFR and exhibited anti-proliferative activity against NSCLCs carrying EGFR mutations, including T790M mutation.
doi:10.1371/journal.pone.0129838
PMCID: PMC4474554  PMID: 26090892
2.  Melanocortins Contribute to Sequential Differentiation and Enucleation of Human Erythroblasts via Melanocortin Receptors 1, 2 and 5 
PLoS ONE  2015;10(4):e0123232.
In this study, we showed that adrenocorticotropic hormone (ACTH) promoted erythroblast differentiation and increased the enucleation ratio of erythroblasts. Because ACTH was contained in hematopoietic medium as contamination, the ratio decreased by the addition of anti-ACTH antibody (Ab). Addition of neutralizing Abs (nAbs) for melanocortin receptors (MCRs) caused erythroblast accumulation at specific stages, i.e., the addition of anti-MC2R nAb led to erythroblast accumulation at the basophilic stage (baso-E), the addition of anti-MC1R nAb caused accumulation at the polychromatic stage (poly-E), and the addition of anti-MC5R nAb caused accumulation at the orthochromatic stage (ortho-E). During erythroblast differentiation, ERK, STAT5, and AKT were consecutively phosphorylated by erythropoietin (EPO). ERK, STAT5, and AKT phosphorylation was inhibited by blocking MC2R, MC1R, and MC5R, respectively. Finally, the phosphorylation of myosin light chain 2, which is essential for the formation of contractile actomyosin rings, was inhibited by anti-MC5R nAb. Taken together, our study suggests that MC2R and MC1R signals are consecutively required for the regulation of EPO signal transduction in erythroblast differentiation, and that MC5R signal transduction is required to induce enucleation. Thus, melanocortin induces proliferation and differentiation at baso-E, and polarization and formation of an actomyosin contractile ring at ortho-E are required for enucleation.
doi:10.1371/journal.pone.0123232
PMCID: PMC4393082  PMID: 25860801
3.  Role of Nutritional Factors at the Early Life Stages in the Pathogenesis and Clinical Course of Type 1 Diabetes 
BioMed Research International  2015;2015:382165.
Nutrition has been suggested as an important environmental factor other than viruses and chemicals in the pathogenesis of type 1 diabetes (T1D). Whereas various maternal dietary nutritional elements have been suggested and examined in T1D of both humans and experimental animals, the results largely remain controversial. In a series of studies using T1D model nonobese diabetic (NOD) mice, maternal dietary n-6/n-3 essential fatty acid ratio during pregnancy and lactation period, that is, early life stages of the offspring, has been shown to affect pathogenesis of insulitis and strongly prevent overt T1D of the offspring, which is consistent with its preventive effects on other allergic diseases.
doi:10.1155/2015/382165
PMCID: PMC4391527  PMID: 25883958
4.  Role of Wnt5a-Ror2 Signaling in Morphogenesis of the Metanephric Mesenchyme during Ureteric Budding 
Molecular and Cellular Biology  2014;34(16):3096-3105.
Development of the metanephric kidney begins with the induction of a single ureteric bud (UB) on the caudal Wolffian duct (WD) in response to GDNF (glial cell line-derived neurotrophic factor) produced by the adjacent metanephric mesenchyme (MM). Mutual interaction between the UB and MM maintains expression of GDNF in the MM, thereby supporting further outgrowth and branching morphogenesis of the UB, while the MM also grows and aggregates around the branched tips of the UB. Ror2, a member of the Ror family of receptor tyrosine kinases, has been shown to act as a receptor for Wnt5a to mediate noncanonical Wnt signaling. We show that Ror2 is predominantly expressed in the MM during UB induction and that Ror2- and Wnt5a-deficient mice exhibit duplicated ureters and kidneys due to ectopic UB induction. During initial UB formation, these mutant embryos show dysregulated positioning of the MM, resulting in spatiotemporally aberrant interaction between the MM and WD, which provides the WD with inappropriate GDNF signaling. Furthermore, the numbers of proliferating cells in the mutant MM are markedly reduced compared to the wild-type MM. These results indicate an important role of Wnt5a-Ror2 signaling in morphogenesis of the MM to ensure proper epithelial tubular formation of the UB required for kidney development.
doi:10.1128/MCB.00491-14
PMCID: PMC4135601  PMID: 24891614
5.  MET gene amplification or EGFR mutation activate MET in lung cancers untreated with EGFR tyrosine kinase inhibitors 
We analyzed MET protein and copy number in NSCLC with or without EGFR mutations untreated with EGFR tyrosine kinase inhibitors (TKIs). MET copy number was examined in 28 NSCLC and 4 human bronchial epithelial cell lines (HBEC) and 100 primary tumors using quantitative real-time PCR. Positive results were confirmed by array comparative genomic hybridization and fluorescence in-situ hybridization. Total and phospho-MET protein expression was determined in 24 NSCLC and 2 HBEC cell lines using Western blot. EGFR mutations were examined for exon 19 deletions, T790M, and L858R. Knockdown of EGFR with siRNA was performed to examine the relation between EGFR and MET activation. High-level MET amplification was observed in 3 of 28 NSCLC cell lines and in 2 of 100 primary lung tumors that had not been treated with EGFR-TKIs. MET protein was highly expressed and phosphorylated in all the 3 cell lines with high MET amplification. In contrast, 6 NSCLC cell lines showed phospho-MET among 21 NSCLC cell lines without MET amplification (p = 0.042). Furthermore, those 6 cell lines harboring phospho-MET expression without MET amplification were all EGFR mutant (p = 0.0039). siRNA-mediated knockdown of EGFR abolished phospho-MET expression in examined 3 EGFR mutant cell lines of which MET gene copy number was not amplified. By contrast, phospho-MET expression in 2 cell lines with amplified MET gene was not down-regulated by knockdown of EGFR. Our results indicated that MET amplification was present in untreated NSCLC and EGFR mutation or MET amplification activated MET protein in NSCLC.
doi:10.1002/ijc.24150
PMCID: PMC2767331  PMID: 19117057
MET; amplification; EGFR; gefitinib; lung cancer
6.  Sequential Molecular Changes during Multistage Pathogenesis of Small Peripheral Adenocarcinomas of the Lung 
Introduction
We investigated EGFR and KRAS alterations among atypical adenomatous hyperplasia and small lung adenocarcinomas with bronchioloalveolar features to understand their role during multistage pathogenesis.
Methods
Sixty lesions measuring 2 cm or less were studied, including 38 noninvasive lesions (4 atypical adenomatous hyperplasias, 19 Noguchi type A and 15 type B) and 22 invasive lesions (type C) based on the World Health Organization classification and Noguchi’s criteria. EGFR and KRAS mutations were examined using PCR-based assays. EGFR copy number was evaluated using fluorescence in situ hybridization.
Results
EGFR and KRAS mutations were found in 26 (43.3%) and 5 (8.3%) lesions, respectively. Increased EGFR copy number status was identified in 10 lesions (16.7%), both mutant and wild type. EGFR or KRAS mutations were present in 39.5% and 7.9% (respectively) of noninvasive lesions and 50% or 9.1% (respectively) of invasive lesions. EGFR copy number was increased in 7.9% and 31.8% of noninvasive and invasive lesions (P = 0.029). Multivariate analysis revealed that increased EGFR copy number was the only significant factor to associate with invasive lesions (P = 0.035).
Conclusions
EGFR and KRAS mutations occur early during the multistage pathogenesis of peripheral lung adenocarcinomas. By contrast, increased EGFR copy number is a late event during tumor development and plays a role in the progression of lung adenocarcinoma independent of the initiating molecular events.
doi:10.1097/JTO.0b013e318168d20a
PMCID: PMC2758162  PMID: 18379350
Multistage pathogenesis; EGFR; KRAS; Mutation; Amplification
7.  Adipocytes from Munc18c-null mice show increased sensitivity to insulin-stimulated GLUT4 externalization 
Journal of Clinical Investigation  2005;115(2):291-301.
Insulin-stimulated glucose uptake in adipocytes is mediated by translocation of vesicles containing the glucose transporter GLUT4 from intracellular storage sites to the cell periphery and the subsequent fusion of these vesicles with the plasma membrane, resulting in the externalization of GLUT4. Fusion of the GLUT4-containing vesicles with the plasma membrane is mediated by a soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complex consisting of vesicle-associated membrane protein 2 (VAMP2), 23-kDa synaptosomal-associated protein (SNAP23), and syntaxin4. We have now generated mouse embryos deficient in the syntaxin4 binding protein Munc18c and show that the insulin-induced appearance of GLUT4 at the cell surface is enhanced in adipocytes derived from these Munc18c−/− mice compared with that in Munc18c+/+ cells. Wortmannin, an inhibitor of PI3K, inhibited insulin-stimulated GLUT4 externalization, without affecting GLUT4 translocation to the cell periphery, in Munc18c+/+ adipocytes, but it did not affect GLUT4 externalization in Munc18c−/− cells. Phosphatidylinositol 3-phosphate, which induced GLUT4 translocation to the cell periphery without externalization in Munc18c+/+ cells, elicited GLUT4 externalization in Munc18c−/− cells. These findings demonstrate that Munc18c inhibits insulin-stimulated externalization of GLUT4 in a wortmannin-sensitive manner, and they suggest that disruption of the interaction between syntaxin4 and Munc18c in adipocytes might result in enhancement of insulin-stimulated GLUT4 externalization.
doi:10.1172/JCI200522681
PMCID: PMC546422  PMID: 15690082
8.  Critical Role of Caenorhabditis elegans Homologs of Cds1 (Chk2)-Related Kinases in Meiotic Recombination 
Molecular and Cellular Biology  2001;21(4):1329-1335.
Although chromosomal segregation at meiosis I is the critical process for genetic reassortment and inheritance, little is known about molecules involved in this process in metazoa. Here we show by utilizing double-stranded RNA (dsRNA)-mediated genetic interference that novel protein kinases (Ce-CDS-1 and Ce-CDS-2) related to Cds1 (Chk2) play an essential role in meiotic recombination in Caenorhabditis elegans. Injection of dsRNA into adult animals resulted in the inhibition of meiotic crossing over and induced the loss of chiasmata at diakinesis in oocytes of F1 animals. However, electron microscopic analysis revealed that synaptonemal complex formation in pachytene nuclei of the same progeny of injected animals appeared to be normal. Thus, Ce-CDS-1 and Ce-CDS-2 are the first example of Cds1-related kinases that are required for meiotic recombination in multicellular organisms.
doi:10.1128/MCB.21.4.1329-1335.2001
PMCID: PMC99585  PMID: 11158318

Results 1-8 (8)