PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Integrative Genomic Analyses Identify BRF2 as a Novel Lineage-Specific Oncogene in Lung Squamous Cell Carcinoma 
PLoS Medicine  2010;7(7):e1000315.
William Lockwood and colleagues show that the focal amplification of a gene, BRF2, on Chromosome 8p12 plays a key role in squamous cell carcinoma of the lung.
Background
Traditionally, non-small cell lung cancer is treated as a single disease entity in terms of systemic therapy. Emerging evidence suggests the major subtypes—adenocarcinoma (AC) and squamous cell carcinoma (SqCC)—respond differently to therapy. Identification of the molecular differences between these tumor types will have a significant impact in designing novel therapies that can improve the treatment outcome.
Methods and Findings
We used an integrative genomics approach, combing high-resolution comparative genomic hybridization and gene expression microarray profiles, to compare AC and SqCC tumors in order to uncover alterations at the DNA level, with corresponding gene transcription changes, which are selected for during development of lung cancer subtypes. Through the analysis of multiple independent cohorts of clinical tumor samples (>330), normal lung tissues and bronchial epithelial cells obtained by bronchial brushing in smokers without lung cancer, we identified the overexpression of BRF2, a gene on Chromosome 8p12, which is specific for development of SqCC of lung. Genetic activation of BRF2, which encodes a RNA polymerase III (Pol III) transcription initiation factor, was found to be associated with increased expression of small nuclear RNAs (snRNAs) that are involved in processes essential for cell growth, such as RNA splicing. Ectopic expression of BRF2 in human bronchial epithelial cells induced a transformed phenotype and demonstrates downstream oncogenic effects, whereas RNA interference (RNAi)-mediated knockdown suppressed growth and colony formation of SqCC cells overexpressing BRF2, but not AC cells. Frequent activation of BRF2 in >35% preinvasive bronchial carcinoma in situ, as well as in dysplastic lesions, provides evidence that BRF2 expression is an early event in cancer development of this cell lineage.
Conclusions
This is the first study, to our knowledge, to show that the focal amplification of a gene in Chromosome 8p12, plays a key role in squamous cell lineage specificity of the disease. Our data suggest that genetic activation of BRF2 represents a unique mechanism of SqCC lung tumorigenesis through the increase of Pol III-mediated transcription. It can serve as a marker for lung SqCC and may provide a novel target for therapy.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Lung cancer is the commonest cause of cancer-related death. Every year, 1.3 million people die from this disease, which is mainly caused by smoking. Most cases of lung cancer are “non-small cell lung cancers” (NSCLCs). Like all cancers, NSCLC starts when cells begin to divide uncontrollably and to move round the body (metastasize) because of changes (mutations) in their genes. These mutations are often in “oncogenes,” genes that, when activated, encourage cell division. Oncogenes can be activated by mutations that alter the properties of the proteins they encode or by mutations that increase the amount of protein made from them, such as gene amplification (an increase in the number of copies of a gene). If NSCLC is diagnosed before it has spread from the lungs (stage I disease), it can be surgically removed and many patients with stage I NSCLC survive for more than 5 years after their diagnosis. Unfortunately, in more than half of patients, NSCLC has metastasized before it is diagnosed. This stage IV NSCLC can be treated with chemotherapy (toxic chemicals that kill fast-growing cancer cells) but only 2% of patients with stage IV lung cancer are alive 5 years after diagnosis.
Why Was This Study Done?
Traditionally, NSCLC has been regarded as a single disease in terms of treatment. However, emerging evidence suggests that the two major subtypes of NSCLC—adenocarcinoma and squamous cell carcinoma (SqCC)—respond differently to chemotherapy. Adenocarcinoma and SqCC start in different types of lung cell and experts think that for each cell type in the body, specific combinations of mutations interact with the cell type's own unique characteristics to provide the growth and survival advantage needed for cancer development. If this is true, then identifying the molecular differences between adenocarcinoma and SqCC could provide targets for more effective therapies for these major subtypes of NSCLC. Amplification of a chromosome region called 8p12 is very common in NSCLC, which suggests that an oncogene that drives lung cancer development is present in this chromosome region. In this study, the researchers investigate this possibility by looking for an amplified gene in the 8p12 chromosome region that makes increased amounts of protein in lung SqCC but not in lung adenocarcinoma.
What Did the Researchers Do and Find?
The researchers used a technique called comparative genomic hybridization to show that focal regions of Chromosome 8p are amplified in about 40% of lung SqCCs, but that DNA loss in this region is the most common alteration in lung adenocarcinomas. Ten genes in the 8p12 chromosome region were expressed at higher levels in the SqCC samples that they examined than in adenocarcinoma samples, they report, and overexpression of five of these genes correlated with amplification of the 8p12 region in the SqCC samples. Only one of the genes—BRF2—was more highly expressed in squamous carcinoma cells than in normal bronchial epithelial cells (the cell type that lines the tubes that take air into the lungs and from which SqCC develops). Artificially induced expression of BRF2 in bronchial epithelial cells made these normal cells behave like tumor cells, whereas reduction of BRF2 expression in squamous carcinoma cells made them behave more like normal bronchial epithelial cells. Finally, BRF2 was frequently activated in two early stages of squamous cell carcinoma—bronchial carcinoma in situ and dysplastic lesions.
What Do These Findings Mean?
Together, these findings show that the focal amplification of chromosome region 8p12 plays a role in the development of lung SqCC but not in the development of lung adenocarcinoma, the other major subtype of NSCLC. These findings identify BRF2 (which encodes a RNA polymerase III transcription initiation factor, a protein that is required for the synthesis of RNA molecules that help to control cell growth) as a lung SqCC-specific oncogene and uncover a unique mechanism for lung SqCC development. Most importantly, these findings suggest that genetic activation of BRF2 could be used as a marker for lung SqCC, which might facilitate the early detection of this type of NSCLC and that BRF2 might provide a new target for therapy.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000315.
The US National Cancer Institute provides detailed information for patients and professionals about all aspects of lung cancer, including information on non-small cell carcinoma (in English and Spanish)
Cancer Research UK also provides information about lung cancer and information on how cancer starts
MedlinePlus has links to other resources about lung cancer (in English and Spanish)
doi:10.1371/journal.pmed.1000315
PMCID: PMC2910599  PMID: 20668658
2.  Novel expressed sequences identified in a model of androgen independent prostate cancer 
BMC Genomics  2007;8:32.
Background
Prostate cancer is the most frequently diagnosed cancer in American men, and few effective treatment options are available to patients who develop hormone-refractory prostate cancer. The molecular changes that occur to allow prostate cells to proliferate in the absence of androgens are not fully understood.
Results
Subtractive hybridization experiments performed with samples from an in vivo model of hormonal progression identified 25 expressed sequences representing novel human transcripts. Intriguingly, these 25 sequences have small open-reading frames and are not highly conserved through evolution, suggesting many of these novel expressed sequences may be derived from untranslated regions of novel transcripts or from non-coding transcripts. Examination of a large metalibrary of human Serial Analysis of Gene Expression (SAGE) tags demonstrated that only three of these novel sequences had been previously detected. RT-PCR experiments confirmed that the 6 sequences tested were expressed in specific human tissues, as well as in clinical samples of prostate cancer. Further RT-PCR experiments for five of these fragments indicated they originated from large untranslated regions of unannotated transcripts.
Conclusion
This study underlines the value of using complementary techniques in the annotation of the human genome. The tissue-specific expression of 4 of the 6 clones tested indicates the expression of these novel transcripts is tightly regulated, and future work will determine the possible role(s) these novel transcripts may play in the progression of prostate cancer.
doi:10.1186/1471-2164-8-32
PMCID: PMC1790899  PMID: 17257419
3.  Effects of Mutations in the Rubella Virus E1 Glycoprotein on E1-E2 Interaction and Membrane Fusion Activity 
Journal of Virology  1998;72(11):8747-8755.
Rubella virus (RV) virions contain two glycosylated membrane proteins, E1 and E2, that exist as a heterodimer and form the viral spike complexes on the virion surface. Formation of an E1-E2 heterodimer is required for transport of E1 out of the endoplasmic reticulum lumen to the Golgi apparatus and plasma membrane. To investigate the nature of the E1-E2 interaction, we have introduced mutations in the internal hydrophobic region (residues 81 to 109) of E1. Substitution of serine at Cys82 (mutant C82S) or deletion of this hydrophobic domain (mutant dt) of E1 resulted in a disruption of the E1 conformation that ultimately affected E1-E2 heterodimer formation and cell surface expression of both E1 and E2. Substitution of either aspartic acid at Gly93 (G93D) or glycine at Pro104 (P104G) was found to impair neither E1-E2 heterodimer formation nor the transport of E1 and E2 to the cell surface. Fusion of RV-infected cells is induced by a brief treatment at a pH below 6.0. To test whether this internal hydrophobic domain is involved in the membrane fusion activity of RV, transformed BHK cell lines expressing either wild-type or mutant spike proteins were exposed to an acidic pH and polykaryon formation was measured. No fusion activity was observed in the C82S, dt, and G93D mutants; however, the wild type and the P104G mutant exhibited fusogenic activities, with greater than 60% and 20 to 40% of the cells being fused, respectively, at pH 4.8. These results suggest that it is likely that the region of E1 between amino acids 81 and 109 is involved in the membrane fusion activity of RV and that it may be important for the interaction of that protein with E2 to form the E1-E2 heterodimer.
PMCID: PMC110290  PMID: 9765418

Results 1-3 (3)