Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Pleuroparenchymal fibroelastosis: a rare interstitial lung disease 
Respirology Case Reports  2015;3(2):82-84.
Pleuroparenchymal fibroelastosis (PPFE) is a newly described form of interstitial lung disease that originates in the upper lung zones and typically progresses to involve the entire lung. The disease may be idiopathic but is often associated with other pre- or coexisting conditions. Pneumothorax is a common complication and can occur at presentation or at other times during the course of the disease. Pathologically, interstitial fibrosis takes the form of a dense consolidation with some preservation of alveolar septal outlines and demonstrates a distinctly abrupt interface with residual normal lung. Unrecognized cases of PPFE may be incorrectly diagnosed as sarcoidosis, atypical idiopathic pulmonary fibrosis, or other unclassifiable interstitial pneumonias.
PMCID: PMC4469148  PMID: 26090119
Pleuroparenchymal fibroelastosis (PPFE)
2.  Smoking status impacts microRNA mediated prognosis and lung adenocarcinoma biology 
BMC Cancer  2014;14:778.
Cigarette smoke is associated with the majority of lung cancers: however, 25% of lung cancer patients are non-smokers, and half of all newly diagnosed lung cancer patients are former smokers. Lung tumors exhibit distinct epidemiological, clinical, pathological, and molecular features depending on smoking status, suggesting divergent mechanisms underlie tumorigenesis in smokers and non-smokers. MicroRNAs (miRNAs) are integral contributors to tumorigenesis and mediate biological responses to smoking. Based on the hypothesis that smoking-specific miRNA differences in lung adenocarcinomas reflect distinct tumorigenic processes selected by different smoking and non-smoking environments, we investigated the contribution of miRNA disruption to lung tumor biology and patient outcome in the context of smoking status.
We applied a whole transcriptome sequencing based approach to interrogate miRNA levels in 94 patient-matched lung adenocarcinoma and non-malignant lung parenchymal tissue pairs from current, former and never smokers.
We discovered novel and distinct smoking status-specific patterns of miRNA and miRNA-mediated gene networks, and identified miRNAs that were prognostically significant in a smoking dependent manner.
We conclude that miRNAs disrupted in a smoking status-dependent manner affect distinct cellular pathways and differentially influence lung cancer patient prognosis in current, former and never smokers. Our findings may represent promising biologically relevant markers for lung cancer prognosis or therapeutic intervention.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2407-14-778) contains supplementary material, which is available to authorized users.
PMCID: PMC4216369  PMID: 25342220
Lung adenocarcinoma; miRNA; Current smoker; Former smoker; Never smoker; Reversible; Survival; Smoking specific
3.  Dabigatran etixilate and traumatic brain injury: Evolving anticoagulants require evolving care plans 
AIM: To investigate the outcomes of trauma patients with traumatic brain injury (TBI) on Dabigatran Etexilate (DE).
METHODS: Following IRB approval, all patients taking DE who were admitted to our level 1 trauma service were enrolled in the study. Injury complexity, length of stay (LOS), intensive care length of stay, operative intervention, therapeutic interventions and outcomes were analyzed retrospectively.
RESULTS: Twenty-eight of 4310 admissions were taking DE. Eleven patients were excluded on concurrent antiplatelet therapy. Average age was 77.14 years (64-94 years), and average LOS was 4.7 d (1-35 d). Thirty-two percent were admitted with intracranial hemorrhage. Eighteen percent received factor VII, and 22% received dialysis in attempts to correct coagulopathy. Mortality was 21%.
CONCLUSION: The low incidence, absence of reversal agents, and lack of practice guidelines makes managing patients with TBI taking DE frustrating and provider specific. Local practice guidelines may be helpful in managing such patients.
PMCID: PMC4133427  PMID: 25133148
Dabigatran; Brain injury; Anticoagulation; Dabigatran reversal
4.  Validation of Airway Wall Measurements by Optical Coherence Tomography in Porcine Airways 
PLoS ONE  2014;9(6):e100145.
Examining and quantifying changes in airway morphology is critical for studying longitudinal pathogenesis and interventions in diseases such as chronic obstructive pulmonary disease and asthma. Here we present fiber-optic optical coherence tomography (OCT) as a nondestructive technique to precisely and accurately measure the 2-dimensional cross-sectional areas of airway wall substructure divided into the mucosa (WAmuc), submucosa (WAsub), cartilage (WAcart), and the airway total wall area (WAt). Porcine lung airway specimens were dissected from freshly resected lung lobes (N = 10). Three-dimensional OCT imaging using a fiber-optic rotary-pullback probe was performed immediately on airways greater than 0.9 mm in diameter on the fresh airway specimens and subsequently on the same specimens post-formalin-fixation. The fixed specimens were serially sectioned and stained with H&E. OCT images carefully matched to selected sections stained with Movat’s pentachrome demonstrated that OCT effectively identifies airway epithelium, lamina propria, and cartilage. Selected H&E sections were digitally scanned and airway total wall areas were measured. Traced measurements of WAmuc, WAsub, WAcart, and WAt from OCT images of fresh specimens by two independent observers found there were no significant differences (p>0.05) between the observer’s measurements. The same wall area measurements from OCT images of formalin-fixed specimens found no significant differences for WAsub, WAcart and WAt, and a small but significant difference for WAmuc. Bland-Altman analysis indicated there were negligible biases between the observers for OCT wall area measurements in both fresh and formalin-fixed specimens. Bland-Altman analysis also indicated there was negligible bias between histology and OCT wall area measurements for both fresh and formalin-fixed specimens. We believe this study sets the groundwork for quantitatively monitoring pathogenesis and interventions in the airways using OCT.
PMCID: PMC4064993  PMID: 24949633
6.  Expression of Matrix Metalloproteinase-1 in Alveolar Macrophages, Type II Pneumocytes, and Airways in Smokers: Relationship to Lung Function and Emphysema 
Lung  2014;192(4):467-472.
An imbalance between proteolytic enzymes and their inhibitors is thought to be involved in the pathogenesis of chronic obstructive pulmonary disease. Matrix metalloproteinase-1, also known as interstitial collagenase, has been implicated as a potentially important proteinase in the genesis of chronic obstructive pulmonary disease and, more specifically, emphysema.
We performed quantitative immunohistochemical assessment of matrix metalloproteinase-1 expression in the resected lung of 20 smokers/ex-smokers who had varying severity of airflow obstruction and emphysema and compared this with the lungs of 5 nonsmokers. Emphysema was measured using a morphometric measure of the lungs’ surface area/volume ratio and with qualitative and quantitative computed tomography (CT) measures of emphysema.
There were significantly more matrix metalloproteinase-1-expressing alveolar macrophages and type II pneumocytes as well as a greater percentage of small airways that stained positively for matrix metalloproteinase-1 in the lungs of smokers than in those of nonsmokers (p < 0.0001, p < 0.0001, and p = 0.0003, respectively). The extent of staining of type II pneumocytes and airways for matrix metalloproteinase-1 was significantly related to the extent of smoking (p = 0.012 and p = 0.013, respectively). In addition, the extent of matrix metalloproteinase-1 staining of alveolar macrophages was related to the lung surface area/volume ratio and to qualitative estimates of emphysema on CT.
These findings suggest that cigarette smoking increases expression of matrix metalloproteinase-1 in alveolar macrophages as well as in alveolar and small airway epithelial cells. Smokers who develop emphysema have increased alveolar macrophage expression of matrix metalloproteinase-1.
Electronic supplementary material
The online version of this article (doi:10.1007/s00408-014-9585-6) contains supplementary material, which is available to authorized users.
PMCID: PMC4104162  PMID: 24792232
Computed tomography; Emphysema; Expression; Immunohistochemistry; Metalloproteinase; Lung
7.  Probability of Cancer in Pulmonary Nodules Detected on First Screening CT 
The New England journal of medicine  2013;369(10):910-919.
Major issues in the implementation of screening for lung cancer by means of low-dose computed tomography (CT) are the definition of a positive result and the management of lung nodules detected on the scans. We conducted a population-based prospective study to determine factors predicting the probability that lung nodules detected on the first screening low-dose CT scans are malignant or will be found to be malignant on follow-up.
We analyzed data from two cohorts of participants undergoing low-dose CT screening. The development data set included participants in the Pan-Canadian Early Detection of Lung Cancer Study (PanCan). The validation data set included participants involved in chemoprevention trials at the British Columbia Cancer Agency (BCCA), sponsored by the U.S. National Cancer Institute. The final outcomes of all nodules of any size that were detected on baseline low-dose CT scans were tracked. Parsimonious and fuller multivariable logistic-regression models were prepared to estimate the probability of lung cancer.
In the PanCan data set, 1871 persons had 7008 nodules, of which 102 were malignant, and in the BCCA data set, 1090 persons had 5021 nodules, of which 42 were malignant. Among persons with nodules, the rates of cancer in the two data sets were 5.5% and 3.7%, respectively. Predictors of cancer in the model included older age, female sex, family history of lung cancer, emphysema, larger nodule size, location of the nodule in the upper lobe, part-solid nodule type, lower nodule count, and spiculation. Our final parsimonious and full models showed excellent discrimination and calibration, with areas under the receiver-operating-characteristic curve of more than 0.90, even for nodules that were 10 mm or smaller in the validation set.
Predictive tools based on patient and nodule characteristics can be used to accurately estimate the probability that lung nodules detected on baseline screening low-dose CT scans are malignant. (Funded by the Terry Fox Research Institute and others; number, NCT00751660.)
PMCID: PMC3951177  PMID: 24004118
8.  Genetic Disruption of KEAP1/CUL3 E3 Ubiquitin Ligase Complex Components is a Key Mechanism of NF-kappaB Pathway Activation in Lung Cancer 
IKBKB (IKK-β/IKK-2), which activates NF-κB, is a substrate of the KEAP1-CUL3-RBX1 E3-ubiquitin ligase complex, implicating this complex in regulation of NF-κB signaling. We investigated complex component gene disruption as a novel genetic mechanism of NF-κB activation in non-small cell lung cancer (NSCLC).
644 tumor- and 90 cell line-genomes were analyzed for gene-dosage status of the individual complex components and IKBKB. Gene expression of these genes, and NF-κB target genes were analyzed in 48 tumors. IKBKB protein levels were assessed in tumors with and without complex or IKBKB genetic disruption. Complex component knockdown was performed to assess effects of the E3-ligase complex on IKBKB and NF-κB levels, and phenotypic importance of IKBKB expression was measured by pharmacological inhibition.
We observed strikingly frequent genetic disruption (42%) and aberrant expression (63%) of the E3-ligase complex and IKBKB in the samples examined. While both adenocarcinomas and squamous cell carcinomas showed complex disruption, the patterns of gene disruption differed. IKBKB levels were elevated with complex disruption, knockdown of complex components increased activated forms of IKBKB and NF-κB proteins, and IKBKB inhibition detriments cell viability, highlighting the biological significance of complex disruption. NF-κB target genes were overexpressed in samples with complex disruption, further demonstrating the effect of complex disruption on NF-κB activity.
Gene dosage alteration is a prominent mechanism that disrupts each component of the KEAP1-CUL3-RBX1 complex and its NF-κB stimulating substrate, IKBKB. Here we show that, multiple component disruption of this complex represents a novel mechanism of NF-κB activation in NSCLC.
PMCID: PMC3164321  PMID: 21795997
KEAP1; CUL3; RBX1; IKBKB; NF-κB signaling; genetic disruption
9.  A case of adalimumab-induced pneumonitis in a 45-year-old man with Crohn’s disease 
Adalimumab is a human monoclonal antibody against tumour necrosis factor-alpha that has been associated with acute lung toxicity, mainly in patients with rheumatoid arthritis. Descriptions of similar patterns of lung injury in patients treated with adalimumab for inflammatory bowel disease are emerging in the literature. A case involving a 45-year-old man with Crohn’s disease who developed a nonbronchiolitis inflammatory nodular pattern of lung injury after starting adalimumab is reported.
PMCID: PMC3267602  PMID: 21969926
Acute drug reaction; Adalimumab; Antitumour necrosis factor-alpha; Drug-induced lung disease; Drug-induced lung toxicity; Interstitial lung disease
10.  Divergent Genomic and Epigenomic Landscapes of Lung Cancer Subtypes Underscore the Selection of Different Oncogenic Pathways during Tumor Development 
PLoS ONE  2012;7(5):e37775.
For therapeutic purposes, non-small cell lung cancer (NSCLC) has traditionally been regarded as a single disease. However, recent evidence suggest that the two major subtypes of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SqCC) respond differently to both molecular targeted and new generation chemotherapies. Therefore, identifying the molecular differences between these tumor types may impact novel treatment strategy. We performed the first large-scale analysis of 261 primary NSCLC tumors (169 AC and 92 SqCC), integrating genome-wide DNA copy number, methylation and gene expression profiles to identify subtype-specific molecular alterations relevant to new agent design and choice of therapy. Comparison of AC and SqCC genomic and epigenomic landscapes revealed 778 altered genes with corresponding expression changes that are selected during tumor development in a subtype-specific manner. Analysis of >200 additional NSCLCs confirmed that these genes are responsible for driving the differential development and resulting phenotypes of AC and SqCC. Importantly, we identified key oncogenic pathways disrupted in each subtype that likely serve as the basis for their differential tumor biology and clinical outcomes. Downregulation of HNF4α target genes was the most common pathway specific to AC, while SqCC demonstrated disruption of numerous histone modifying enzymes as well as the transcription factor E2F1. In silico screening of candidate therapeutic compounds using subtype-specific pathway components identified HDAC and PI3K inhibitors as potential treatments tailored to lung SqCC. Together, our findings suggest that AC and SqCC develop through distinct pathogenetic pathways that have significant implication in our approach to the clinical management of NSCLC.
PMCID: PMC3357406  PMID: 22629454
11.  Lung Adenocarcinoma of Never Smokers and Smokers Harbor Differential Regions of Genetic Alteration and Exhibit Different Levels of Genomic Instability 
PLoS ONE  2012;7(3):e33003.
Recent evidence suggests that the observed clinical distinctions between lung tumors in smokers and never smokers (NS) extend beyond specific gene mutations, such as EGFR, EML4-ALK, and KRAS, some of which have been translated into targeted therapies. However, the molecular alterations identified thus far cannot explain all of the clinical and biological disparities observed in lung tumors of NS and smokers. To this end, we performed an unbiased genome-wide, comparative study to identify novel genomic aberrations that differ between smokers and NS.
High resolution whole genome DNA copy number profiling of 69 lung adenocarcinomas from smokers (n = 39) and NS (n = 30) revealed both global and regional disparities in the tumor genomes of these two groups. We found that NS lung tumors had a greater proportion of their genomes altered than those of smokers. Moreover, copy number gains on chromosomes 5q, 7p, and 16p occurred more frequently in NS. We validated our findings in two independently generated public datasets. Our findings provide a novel line of evidence distinguishing genetic differences between smoker and NS lung tumors, namely, that the extent of segmental genomic alterations is greater in NS tumors. Collectively, our findings provide evidence that these lung tumors are globally and genetically different, which implies they are likely driven by distinct molecular mechanisms.
PMCID: PMC3296775  PMID: 22412972
12.  The role of resection of pulmonary metastases from prostate cancer: a case report and literature review 
We report a case of a 53-year-old man who presented with two nodules in the lower lobe and one nodule in the upper lobe of the right lung almost 7 years after radical prostatectomy for pT3aN0M0, Gleason 4+5 disease, without evidence of osseous or lymphatic spread. Surgical resection of the lower lung nodules confirmed metastases, but prostate-specific antigen did not drop to undetectable levels. Isolated pulmonary metastases from prostate cancer are rare with only 33 previously described cases in the English-language literature, 18 of which were solitary metastases. We review the principles of management, including metastasectomy and long-term prognosis.
PMCID: PMC3235183  PMID: 22154171
13.  A pleural mass with pulmonary infiltrates 
BMJ Case Reports  2009;2009:bcr09.2008.0999.
This case study describes a 34-year-old woman presenting with a subacute history of dyspnoea associated with pleural based masses and pulmonary infiltrates. A computed tomography guided biopsy confirmed the presence of a pleural based thymoma, and a video assisted thoracoscopic lung biopsy revealed the pulmonary infiltrates to be a lymphocytic interstitial pneumonitis (LIP). The thymomas responded successfully to chemotherapy and the LIP improved following corticosteroid therapy.
PMCID: PMC3028119  PMID: 21686513
14.  Quantification of lung surface area using computed tomography 
Respiratory Research  2010;11(1):153.
To refine the CT prediction of emphysema by comparing histology and CT for specific regions of lung. To incorporate both regional lung density measured by CT and cluster analysis of low attenuation areas for comparison with histological measurement of surface area per unit lung volume.
The histological surface area per unit lung volume was estimated for 140 samples taken from resected lung specimens of fourteen subjects. The region of the lung sampled for histology was located on the pre-operative CT scan; the regional CT median lung density and emphysematous lesion size were calculated using the X-ray attenuation values and a low attenuation cluster analysis. Linear mixed models were used to examine the relationships between histological surface area per unit lung volume and CT measures.
The median CT lung density, low attenuation cluster analysis, and the combination of both were important predictors of surface area per unit lung volume measured by histology (p < 0.0001). Akaike's information criterion showed the model incorporating both parameters provided the most accurate prediction of emphysema.
Combining CT measures of lung density and emphysematous lesion size provides a more accurate estimate of lung surface area per unit lung volume than either measure alone.
PMCID: PMC2976969  PMID: 21040527
15.  Integrative Genomic Analyses Identify BRF2 as a Novel Lineage-Specific Oncogene in Lung Squamous Cell Carcinoma 
PLoS Medicine  2010;7(7):e1000315.
William Lockwood and colleagues show that the focal amplification of a gene, BRF2, on Chromosome 8p12 plays a key role in squamous cell carcinoma of the lung.
Traditionally, non-small cell lung cancer is treated as a single disease entity in terms of systemic therapy. Emerging evidence suggests the major subtypes—adenocarcinoma (AC) and squamous cell carcinoma (SqCC)—respond differently to therapy. Identification of the molecular differences between these tumor types will have a significant impact in designing novel therapies that can improve the treatment outcome.
Methods and Findings
We used an integrative genomics approach, combing high-resolution comparative genomic hybridization and gene expression microarray profiles, to compare AC and SqCC tumors in order to uncover alterations at the DNA level, with corresponding gene transcription changes, which are selected for during development of lung cancer subtypes. Through the analysis of multiple independent cohorts of clinical tumor samples (>330), normal lung tissues and bronchial epithelial cells obtained by bronchial brushing in smokers without lung cancer, we identified the overexpression of BRF2, a gene on Chromosome 8p12, which is specific for development of SqCC of lung. Genetic activation of BRF2, which encodes a RNA polymerase III (Pol III) transcription initiation factor, was found to be associated with increased expression of small nuclear RNAs (snRNAs) that are involved in processes essential for cell growth, such as RNA splicing. Ectopic expression of BRF2 in human bronchial epithelial cells induced a transformed phenotype and demonstrates downstream oncogenic effects, whereas RNA interference (RNAi)-mediated knockdown suppressed growth and colony formation of SqCC cells overexpressing BRF2, but not AC cells. Frequent activation of BRF2 in >35% preinvasive bronchial carcinoma in situ, as well as in dysplastic lesions, provides evidence that BRF2 expression is an early event in cancer development of this cell lineage.
This is the first study, to our knowledge, to show that the focal amplification of a gene in Chromosome 8p12, plays a key role in squamous cell lineage specificity of the disease. Our data suggest that genetic activation of BRF2 represents a unique mechanism of SqCC lung tumorigenesis through the increase of Pol III-mediated transcription. It can serve as a marker for lung SqCC and may provide a novel target for therapy.
Please see later in the article for the Editors' Summary
Editors' Summary
Lung cancer is the commonest cause of cancer-related death. Every year, 1.3 million people die from this disease, which is mainly caused by smoking. Most cases of lung cancer are “non-small cell lung cancers” (NSCLCs). Like all cancers, NSCLC starts when cells begin to divide uncontrollably and to move round the body (metastasize) because of changes (mutations) in their genes. These mutations are often in “oncogenes,” genes that, when activated, encourage cell division. Oncogenes can be activated by mutations that alter the properties of the proteins they encode or by mutations that increase the amount of protein made from them, such as gene amplification (an increase in the number of copies of a gene). If NSCLC is diagnosed before it has spread from the lungs (stage I disease), it can be surgically removed and many patients with stage I NSCLC survive for more than 5 years after their diagnosis. Unfortunately, in more than half of patients, NSCLC has metastasized before it is diagnosed. This stage IV NSCLC can be treated with chemotherapy (toxic chemicals that kill fast-growing cancer cells) but only 2% of patients with stage IV lung cancer are alive 5 years after diagnosis.
Why Was This Study Done?
Traditionally, NSCLC has been regarded as a single disease in terms of treatment. However, emerging evidence suggests that the two major subtypes of NSCLC—adenocarcinoma and squamous cell carcinoma (SqCC)—respond differently to chemotherapy. Adenocarcinoma and SqCC start in different types of lung cell and experts think that for each cell type in the body, specific combinations of mutations interact with the cell type's own unique characteristics to provide the growth and survival advantage needed for cancer development. If this is true, then identifying the molecular differences between adenocarcinoma and SqCC could provide targets for more effective therapies for these major subtypes of NSCLC. Amplification of a chromosome region called 8p12 is very common in NSCLC, which suggests that an oncogene that drives lung cancer development is present in this chromosome region. In this study, the researchers investigate this possibility by looking for an amplified gene in the 8p12 chromosome region that makes increased amounts of protein in lung SqCC but not in lung adenocarcinoma.
What Did the Researchers Do and Find?
The researchers used a technique called comparative genomic hybridization to show that focal regions of Chromosome 8p are amplified in about 40% of lung SqCCs, but that DNA loss in this region is the most common alteration in lung adenocarcinomas. Ten genes in the 8p12 chromosome region were expressed at higher levels in the SqCC samples that they examined than in adenocarcinoma samples, they report, and overexpression of five of these genes correlated with amplification of the 8p12 region in the SqCC samples. Only one of the genes—BRF2—was more highly expressed in squamous carcinoma cells than in normal bronchial epithelial cells (the cell type that lines the tubes that take air into the lungs and from which SqCC develops). Artificially induced expression of BRF2 in bronchial epithelial cells made these normal cells behave like tumor cells, whereas reduction of BRF2 expression in squamous carcinoma cells made them behave more like normal bronchial epithelial cells. Finally, BRF2 was frequently activated in two early stages of squamous cell carcinoma—bronchial carcinoma in situ and dysplastic lesions.
What Do These Findings Mean?
Together, these findings show that the focal amplification of chromosome region 8p12 plays a role in the development of lung SqCC but not in the development of lung adenocarcinoma, the other major subtype of NSCLC. These findings identify BRF2 (which encodes a RNA polymerase III transcription initiation factor, a protein that is required for the synthesis of RNA molecules that help to control cell growth) as a lung SqCC-specific oncogene and uncover a unique mechanism for lung SqCC development. Most importantly, these findings suggest that genetic activation of BRF2 could be used as a marker for lung SqCC, which might facilitate the early detection of this type of NSCLC and that BRF2 might provide a new target for therapy.
Additional Information
Please access these Web sites via the online version of this summary at
The US National Cancer Institute provides detailed information for patients and professionals about all aspects of lung cancer, including information on non-small cell carcinoma (in English and Spanish)
Cancer Research UK also provides information about lung cancer and information on how cancer starts
MedlinePlus has links to other resources about lung cancer (in English and Spanish)
PMCID: PMC2910599  PMID: 20668658
16.  Disruption of the non-canonical WNT pathway in lung squamous cell carcinoma 
Clinical medicine. Oncology  2008;2008(2):169-179.
Disruptions of beta-catenin and the canonical Wnt pathway are well documented in cancer. However, little is known of the non-canonical branch of the Wnt pathway. In this study, we investigate the transcript level patterns of genes in the Wnt pathway in squamous cell lung cancer using reverse-transcriptase (RT)-PCR. It was found that over half of the samples examined exhibited dysregulated gene expression of multiple components of the non-canonical branch of the WNT pathway. In the cases where beta catenin (CTNNB1) was not over-expressed, we identified strong relationships of expression between wingless-type MMTV integration site family member 5A (WNT5A)/ frizzled homolog 2 (FZD2), frizzled homolog 3 (FZD3) / dishevelled 2 (DVL2), and low density lipoprotein receptor-related protein 5 (LRP5)/ secreted frizzled-related protein 4 (SFRP4). This is one of the first studies to demonstrate expression of genes in the non-canonical pathway in normal lung tissue and its disruption in lung squamous cell carcinoma. These findings suggest that the non-canonical pathway may have a more prominent role in lung cancer than previously reported.
PMCID: PMC2855195  PMID: 20401333
WNT pathway; lung cancer; gene expression; NSCLC; non-canonical; squamous cell carcinoma
17.  Disruption of the Non-Canonical WNT Pathway in Lung Squamous Cell Carcinoma 
Clinical Medicine. Oncology  2008;2:169-179.
Disruptions of beta-catenin and the canonical Wnt pathway are well documented in cancer. However, little is known of the non-canonical branch of the Wnt pathway. In this study, we investigate the transcript level patterns of genes in the Wnt pathway in squamous cell lung cancer using reverse-transcriptase (RT)-PCR. It was found that over half of the samples examined exhibited dysregulated gene expression of multiple components of the non-canonical branch of the WNT pathway. In the cases where beta catenin (CTNNB1) was not over-expressed, we identified strong relationships of expression between wingless-type MMTV integration site family member 5A (WNT5A)/frizzled homolog 2 (FZD2), frizzled homolog 3 (FZD3)/dishevelled 2 (DVL2), and low density lipoprotein receptor-related protein 5 (LRP5)/secreted frizzled-related protein 4 (SFRP4). This is one of the first studies to demonstrate expression of genes in the non-canonical pathway in normal lung tissue and its disruption in lung squamous cell carcinoma. These findings suggest that the non-canonical pathway may have a more prominent role in lung cancer than previously reported.
PMCID: PMC2855195  PMID: 20401333
WNT pathway; lung cancer; gene expression; NSCLC; non-canonical; squamous cell carcinoma
18.  Correlations of EGFR mutations and increases in EGFR and HER2 copy number to gefitinib response in a retrospective analysis of lung cancer patients 
BMC Cancer  2007;7:128.
Gefitinib, a small molecule tyrosine kinase inhibitor of the Epidermal Growth Factor Receptor (EGFR), has shown limited efficacy in the treatment of lung cancer. Recognized clinical predictors of response to this drug, specifically female, non-smoker, Asian descent, and adenocarcinoma, together suggest a genetic basis for drug response. Recent studies have addressed the relationship between response and either sequence mutations or increased copy number of specific receptor tyrosine kinases. We set out to examine the relationship between response and the molecular status of two such kinases, EGFR and HER2, in 39 patients treated with gefitinib at the BC Cancer Agency.
Archival patient material was reviewed by a pathologist and malignant cells were selectively isolated by laser microdissection or manual recovery of cells from microscope slides. Genomic DNA was extracted from 37 such patient samples and exons 18–24, coding for the tyrosine kinase domain of EGFR, were amplified by PCR and sequenced. EGFR and HER2 copy number status were also assessed using FISH in 26 samples. Correlations between molecular features and drug response were assessed using the two-sided Fisher's exact test.
Mutations previously correlated with response were detected in five tumours, four with exon 19 deletions and one with an exon 21 missense L858R point mutation. Increased gene copy number was observed in thirteen tumours, seven with EGFR amplification, three with HER2 amplification, and three with amplification of both genes. In our study cohort, a correlation was not observed between response and EGFR mutations (exon 19 deletion p = 0.0889, we observed a single exon 21 mutation in a non-responder) or increases in EGFR or HER2 copy number (p = 0.552 and 0.437, respectively).
Neither mutation of EGFR nor increased copy number of EGFR or HER2 was diagnostic of response to gefitinib in this cohort. However, validation of these features in a larger sample set is appropriate. Identification of additional predictive biomarkers beyond EGFR status may be necessary to accurately predict treatment outcome.
PMCID: PMC1952070  PMID: 17626639
20.  Resource Utilization and Costs during the Initial Years of Lung Cancer Screening with Computed Tomography in Canada 
Journal of Thoracic Oncology  2014;9(10):1449-1458.
It is estimated that millions of North Americans would qualify for lung cancer screening and that billions of dollars of national health expenditures would be required to support population-based computed tomography lung cancer screening programs. The decision to implement such programs should be informed by data on resource utilization and costs.
Resource utilization data were collected prospectively from 2059 participants in the Pan-Canadian Early Detection of Lung Cancer Study using low-dose computed tomography (LDCT). Participants who had 2% or greater lung cancer risk over 3 years using a risk prediction tool were recruited from seven major cities across Canada. A cost analysis was conducted from the Canadian public payer’s perspective for resources that were used for the screening and treatment of lung cancer in the initial years of the study.
The average per-person cost for screening individuals with LDCT was $453 (95% confidence interval [CI], $400–$505) for the initial 18-months of screening following a baseline scan. The screening costs were highly dependent on the detected lung nodule size, presence of cancer, screening intervention, and the screening center. The mean per-person cost of treating lung cancer with curative surgery was $33,344 (95% CI, $31,553–$34,935) over 2 years. This was lower than the cost of treating advanced-stage lung cancer with chemotherapy, radiotherapy, or supportive care alone, ($47,792; 95% CI, $43,254–$52,200; p = 0.061).
In the Pan-Canadian study, the average cost to screen individuals with a high risk for developing lung cancer using LDCT and the average initial cost of curative intent treatment were lower than the average per-person cost of treating advanced stage lung cancer which infrequently results in a cure.
PMCID: PMC4165479  PMID: 25105438
Lung cancer screening; Cost analysis; Cost-effectiveness

Results 1-20 (20)