PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Optical Technologies and Molecular Imaging for Cervical Neoplasia: A Program Project Update 
Gender Medicine  2011;9(1 Suppl):S7-S24.
There is an urgent global need for effective and affordable approaches to cervical cancer screening and diagnosis. For developing nations, cervical malignancies remain the leading cause of cancer death in women. This reality is difficult to accept given that these deaths are largely preventable; where cervical screening programs are implemented, cervical cancer deaths decrease dramatically. In the developed world, the challenges with respect to cervical disease stem from high costs and over-treatment. We are presently eleven years into a National Cancer Institute-funded Program Project (P01 CA82710) that is evaluating optical technologies for their applicability to the cervical cancer problem. Our mandate is to create new tools for disease detection and diagnosis that are inexpensive, require minimal expertise to use, are more accurate than existing modalities, and will be feasibly implemented in a variety of clinical settings. Herein, we update the status of this work and explain the long-term goals of this project.
doi:10.1016/j.genm.2011.08.002
PMCID: PMC3289763  PMID: 21944317
2.  Evaluation of HPV Infection and Smoking Status Impacts on Cell Proliferation in Epithelial Layers of Cervical Neoplasia 
PLoS ONE  2014;9(9):e107088.
Accurate cervical intra-epithelial neoplasia (CIN) lesion grading is needed for effective patient management. We applied computer-assisted scanning and analytic approaches to immuno-stained CIN lesion sections to more accurately delineate disease states and decipher cell proliferation impacts from HPV and smoking within individual epithelial layers. A patient cohort undergoing cervical screening was identified (n = 196) and biopsies of varying disease grades and with intact basement membranes and epithelial layers were obtained (n = 261). Specimens were sectioned, stained (Mib1), and scanned using a high-resolution imaging system. We achieved semi-automated delineation of proliferation status and epithelial cell layers using Otsu segmentation, manual image review, Voronoi tessellation, and immuno-staining. Data were interrogated against known status for HPV infection, smoking, and disease grade. We observed increased cell proliferation and decreased epithelial thickness with increased disease grade (when analyzing the epithelium at full thickness). Analysis within individual cell layers showed a ≥50% increase in cell proliferation for CIN2 vs. CIN1 lesions in higher epithelial layers (with minimal differences seen in basal/parabasal layers). Higher rates of proliferation for HPV-positive vs. -negative cases were seen in epithelial layers beyond the basal/parabasal layers in normal and CIN1 tissues. Comparing smokers vs. non-smokers, we observed increased cell proliferation in parabasal (low and high grade lesions) and basal layers (high grade only). In sum, we report CIN grade-specific differences in cell proliferation within individual epithelial layers. We also show HPV and smoking impacts on cell layer-specific proliferation. Our findings yield insight into CIN progression biology and demonstrate that rigorous, semi-automated imaging of histopathological specimens may be applied to improve disease grading accuracy.
doi:10.1371/journal.pone.0107088
PMCID: PMC4161429  PMID: 25210770
3.  Integrative Genomic Analyses Identify BRF2 as a Novel Lineage-Specific Oncogene in Lung Squamous Cell Carcinoma 
PLoS Medicine  2010;7(7):e1000315.
William Lockwood and colleagues show that the focal amplification of a gene, BRF2, on Chromosome 8p12 plays a key role in squamous cell carcinoma of the lung.
Background
Traditionally, non-small cell lung cancer is treated as a single disease entity in terms of systemic therapy. Emerging evidence suggests the major subtypes—adenocarcinoma (AC) and squamous cell carcinoma (SqCC)—respond differently to therapy. Identification of the molecular differences between these tumor types will have a significant impact in designing novel therapies that can improve the treatment outcome.
Methods and Findings
We used an integrative genomics approach, combing high-resolution comparative genomic hybridization and gene expression microarray profiles, to compare AC and SqCC tumors in order to uncover alterations at the DNA level, with corresponding gene transcription changes, which are selected for during development of lung cancer subtypes. Through the analysis of multiple independent cohorts of clinical tumor samples (>330), normal lung tissues and bronchial epithelial cells obtained by bronchial brushing in smokers without lung cancer, we identified the overexpression of BRF2, a gene on Chromosome 8p12, which is specific for development of SqCC of lung. Genetic activation of BRF2, which encodes a RNA polymerase III (Pol III) transcription initiation factor, was found to be associated with increased expression of small nuclear RNAs (snRNAs) that are involved in processes essential for cell growth, such as RNA splicing. Ectopic expression of BRF2 in human bronchial epithelial cells induced a transformed phenotype and demonstrates downstream oncogenic effects, whereas RNA interference (RNAi)-mediated knockdown suppressed growth and colony formation of SqCC cells overexpressing BRF2, but not AC cells. Frequent activation of BRF2 in >35% preinvasive bronchial carcinoma in situ, as well as in dysplastic lesions, provides evidence that BRF2 expression is an early event in cancer development of this cell lineage.
Conclusions
This is the first study, to our knowledge, to show that the focal amplification of a gene in Chromosome 8p12, plays a key role in squamous cell lineage specificity of the disease. Our data suggest that genetic activation of BRF2 represents a unique mechanism of SqCC lung tumorigenesis through the increase of Pol III-mediated transcription. It can serve as a marker for lung SqCC and may provide a novel target for therapy.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Lung cancer is the commonest cause of cancer-related death. Every year, 1.3 million people die from this disease, which is mainly caused by smoking. Most cases of lung cancer are “non-small cell lung cancers” (NSCLCs). Like all cancers, NSCLC starts when cells begin to divide uncontrollably and to move round the body (metastasize) because of changes (mutations) in their genes. These mutations are often in “oncogenes,” genes that, when activated, encourage cell division. Oncogenes can be activated by mutations that alter the properties of the proteins they encode or by mutations that increase the amount of protein made from them, such as gene amplification (an increase in the number of copies of a gene). If NSCLC is diagnosed before it has spread from the lungs (stage I disease), it can be surgically removed and many patients with stage I NSCLC survive for more than 5 years after their diagnosis. Unfortunately, in more than half of patients, NSCLC has metastasized before it is diagnosed. This stage IV NSCLC can be treated with chemotherapy (toxic chemicals that kill fast-growing cancer cells) but only 2% of patients with stage IV lung cancer are alive 5 years after diagnosis.
Why Was This Study Done?
Traditionally, NSCLC has been regarded as a single disease in terms of treatment. However, emerging evidence suggests that the two major subtypes of NSCLC—adenocarcinoma and squamous cell carcinoma (SqCC)—respond differently to chemotherapy. Adenocarcinoma and SqCC start in different types of lung cell and experts think that for each cell type in the body, specific combinations of mutations interact with the cell type's own unique characteristics to provide the growth and survival advantage needed for cancer development. If this is true, then identifying the molecular differences between adenocarcinoma and SqCC could provide targets for more effective therapies for these major subtypes of NSCLC. Amplification of a chromosome region called 8p12 is very common in NSCLC, which suggests that an oncogene that drives lung cancer development is present in this chromosome region. In this study, the researchers investigate this possibility by looking for an amplified gene in the 8p12 chromosome region that makes increased amounts of protein in lung SqCC but not in lung adenocarcinoma.
What Did the Researchers Do and Find?
The researchers used a technique called comparative genomic hybridization to show that focal regions of Chromosome 8p are amplified in about 40% of lung SqCCs, but that DNA loss in this region is the most common alteration in lung adenocarcinomas. Ten genes in the 8p12 chromosome region were expressed at higher levels in the SqCC samples that they examined than in adenocarcinoma samples, they report, and overexpression of five of these genes correlated with amplification of the 8p12 region in the SqCC samples. Only one of the genes—BRF2—was more highly expressed in squamous carcinoma cells than in normal bronchial epithelial cells (the cell type that lines the tubes that take air into the lungs and from which SqCC develops). Artificially induced expression of BRF2 in bronchial epithelial cells made these normal cells behave like tumor cells, whereas reduction of BRF2 expression in squamous carcinoma cells made them behave more like normal bronchial epithelial cells. Finally, BRF2 was frequently activated in two early stages of squamous cell carcinoma—bronchial carcinoma in situ and dysplastic lesions.
What Do These Findings Mean?
Together, these findings show that the focal amplification of chromosome region 8p12 plays a role in the development of lung SqCC but not in the development of lung adenocarcinoma, the other major subtype of NSCLC. These findings identify BRF2 (which encodes a RNA polymerase III transcription initiation factor, a protein that is required for the synthesis of RNA molecules that help to control cell growth) as a lung SqCC-specific oncogene and uncover a unique mechanism for lung SqCC development. Most importantly, these findings suggest that genetic activation of BRF2 could be used as a marker for lung SqCC, which might facilitate the early detection of this type of NSCLC and that BRF2 might provide a new target for therapy.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000315.
The US National Cancer Institute provides detailed information for patients and professionals about all aspects of lung cancer, including information on non-small cell carcinoma (in English and Spanish)
Cancer Research UK also provides information about lung cancer and information on how cancer starts
MedlinePlus has links to other resources about lung cancer (in English and Spanish)
doi:10.1371/journal.pmed.1000315
PMCID: PMC2910599  PMID: 20668658
4.  Public Databases and Software for the Pathway Analysis of Cancer Genomes 
Cancer informatics  2007;3:379-397.
The study of pathway disruption is key to understanding cancer biology. Advances in high throughput technologies have led to the rapid accumulation of genomic data. The explosion in available data has generated opportunities for investigation of concerted changes that disrupt biological functions, this in turns created a need for computational tools for pathway analysis. In this review, we discuss approaches to the analysis of genomic data and describe the publicly available resources for studying biological pathways.
PMCID: PMC2410087  PMID: 19455256
5.  Public Databases and Software for the Pathway Analysis of Cancer Genomes 
Cancer Informatics  2007;3:379-397.
The study of pathway disruption is key to understanding cancer biology. Advances in high throughput technologies have led to the rapid accumulation of genomic data. The explosion in available data has generated opportunities for investigation of concerted changes that disrupt biological functions, this in turns created a need for computational tools for pathway analysis. In this review, we discuss approaches to the analysis of genomic data and describe the publicly available resources for studying biological pathways.
PMCID: PMC2410087  PMID: 19455256

Results 1-5 (5)