PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (34)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  ETS2 mediated tumor suppressive function and MET oncogene inhibition in human non-small cell lung cancer 
PURPOSE
The ETS2 transcription factor is an evolutionarily conserved gene that is deregulated in cancer. We analyzed the transcriptome of lung adenocarcinomas and normal lung tissue by expression profiling and found that ETS2 was significantly down-regulated in adenocarcinomas. In this study, we probed the yet unknown functional role of ETS2 in lung cancer pathogenesis.
EXPERIMENTAL DESIGN
Lung adenocarcinomas (n=80) and normal lung tissues (n=30) were profiled using the Affymetrix Human Gene 1.0 ST platform. Immunohistochemical (IHC) analysis was performed to determine ETS2 protein expression in NSCLC histological tissue specimens (n=201). Patient clinical outcome, based on ETS2 IHC expression, was statistically assessed using the log-rank and Kaplan-Meier tests. RNA interference and over-expression strategies were employed to assess effects of ETS2 expression on the transcriptome and on various malignant phenotypes.
RESULTS
ETS2 expression was significantly reduced in lung adenocarcinomas compared to normal lung (p<0.001). Low ETS2 IHC expression was a significant predictor of shorter time to recurrence in NSCLC (p=0.009, HR=1.89) and adenocarcinoma (p=0.03, HR=1.86). Moreover, ETS2 was found to significantly inhibit lung cancer cell growth, migration and invasion (p<0.05), and microarray and pathways analysis revealed significant (p<0.001) activation of the HGF pathway following ETS2 knockdown. In addition, ETS2 was found to suppress MET phosphorylation and knockdown of MET expression significantly attenuated (p<0.05) cell invasion mediated by ETS2-specific siRNA. Furthermore, knockdown of ETS2 augmented HGF-induced MET phosphorylation, cell migration and invasion.
CONCLUSION(S)
Our findings point to a tumor suppressor role for ETS2 in human NSCLC pathogenesis through inhibition of the MET proto-oncogene.
doi:10.1158/1078-0432.CCR-13-0341
PMCID: PMC3846434  PMID: 23659968
NSCLC; ETS2; tumor suppressor; MET; HGF
2.  RHOA-FAK is a required signaling axis for the maintenance of KRAS-driven adenocarcinomas 
Cancer discovery  2013;3(4):444-457.
Non-small cell lung cancer (NSCLC) often expresses mutant KRAS together with tumor-associated mutations of the CDKN2A locus, which are associated with aggressive, therapy-resistant tumors. Here, we unravel specific requirements for the maintenance of NSCLC that carry this genotype. We establish that the ERK/RHOA/focal adhesion kinase (FAK) network is deregulated in high-grade lung tumors. Suppression of RHOA or FAK induces cell death selectively in mutant KRAS;INK4a/ARF deficient lung cancer cells. Furthermore, pharmacological inhibition of FAK caused tumor regression specifically in the high-grade lung cancer that developed in mutant Kras;Cdkn2a-null mice. Our findings provide the rationale for the rapid implementation of genotype-specific targeted therapies utilizing FAK inhibitors in cancer patients.
doi:10.1158/2159-8290.CD-12-0388
PMCID: PMC3625467  PMID: 23358651
KRAS; INK4a/ARF deficiency; lung cancer; genotype-specific vulnerabilities; FAK inhibitors; targeted cancer therapy
3.  A 12-Gene Set Predicts Survival Benefits from Adjuvant Chemotherapy in Non-Small-Cell Lung Cancer Patients 
Purpose
Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non-small-cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC.
Experimental Design
An 18-hub-gene prognosis signature was developed through a systems biology approach, and its prognostic value was evaluated in six independent cohorts. The 18-hub-gene set was then integrated with genome-wide functional (RNAi) data and genetic aberration data to derive a 12-gene predictive signature for ACT benefits in NSCLC.
Results
Using a cohort of 442 Stage I–III NSCLC patients who underwent surgical resection, we identified an 18-hub-gene set which robustly predicted the prognosis of patients with adenocarcinoma in all validation datasets across four microarray platforms. The hub genes, identified through a purely data-driven approach, have significant biological implications in tumor pathogenesis, including NKX2-1, Aurora Kinase A, PRC1, CDKN3, MBIP, RRM2. The 12-gene predictive signature was successfully validated in two independent datasets (N=90 and N=176). The predicted benefit group showed significant improvement in survival after ACT (UT Lung SPORE data: hazard ratio=0.34, p=0.017; JBR.10 clinical trial data: hazard ratio=0.36, p=0.038), while the predicted non-benefit group showed no survival benefit for two datasets (hazard ratio=0.80, p=0.70; hazard ratio= 0.91, p=0.82).
Conclusions
This is the first study to integrate genetic aberration, genome-wide RNAi data, and mRNA expression data to identify a functional gene set that predicts which resectable patients with non-small-cell lung cancer will have a survival benefit with ACT.
doi:10.1158/1078-0432.CCR-12-2321
PMCID: PMC3619002  PMID: 23357979
non-small-cell lung cancer; predictive gene signature; adjuvant chemotherapy; integrative analysis; hub genes
4.  Prognostic Significance of Combinations of RNA-Dependent Protein Kinase and EphA2 Biomarkers for NSCLC 
Introduction
RNA-dependent protein kinase (PKR) is an independent prognostic variable in patients with non-small cell lung cancer (NSCLC). In the present study, we investigated the correlation between PKR and 25 other biomarkers for NSCLC, identified the markers that could further improve the prognostic significance of PKR, and elucidated the mechanisms of interaction between these markers and PKR.
Methords
Tissue microarray samples obtained from 218 lung cancer patients were stained with an anti-PKR antibody and antibodies against 25 biomarkers. Immunohistochemical expression was scored and used for Kaplan-Meier survival analysis. The interaction between PKR and EphA2 in NSCLC cell lines was examined.
Results
We found that PKR was associated with EphA2 and that the prognostic information regarding NSCLC provided by the combination of PKR and EphA2 (P/E) was significantly more accurate than that provided by either marker alone. The 5-year overall survival rate in PKRlow/EphA2high patients (20%) was significantly lower than that of PKRhigh/EphA2low patients (74%), PKRhigh/EphA2high patients (55%), and PKRlow/EphA2low patients (55%) (p< 0.0001). We also found that the PKR:EphA2 (P/E) ratio was significantly associated with prognosis (p< 0.0001). Univariate and multivariate Cox analyses revealed that this P/E combination or ratio was an independent predictor of overall survival. In addition, induction of PKR expression reduced EphA2 protein expression levels in NSCLC cell lines.
Conclusions
PKR/EphA2 is a significant predictor of prognosis for NSCLC. PKR/EphA2 may be a promising approach to improving screening efficiency and predicting prognosis in NSCLC patients.
doi:10.1097/JTO.0b013e318282def7
PMCID: PMC3573252  PMID: 23370317
PKR; EphA2; Biomarker; Lung cancer
5.  Prognostic value of LIPC in non-small cell lung carcinoma 
Cell Cycle  2013;12(4):647-654.
Non-small cell lung carcinoma (NSCLC) is the most common form of lung cancer and is associated with a high mortality rate worldwide. The majority of individuals bearing NSCLC are treated with surgery plus adjuvant cisplatin, an initially effective therapeutic regimen that, however, is unable to prevent relapse within 5 years after tumor resection in an elevated proportion of patients. The factors that predict the clinical course of NSCLC and its sensitivity to therapy remain largely obscure. One notable exception is provided by pyridoxal kinase (PDXK), the enzyme that generates the bioactive form of vitamin B6. PDXK has recently been shown to be required for optimal cisplatin responses in vitro and in vivo and to constitute a bona fide prognostic marker in the NSCLC setting. Together with PDXK, 84 additional factors were identified that influence the response of NSCLC cells to cisplatin, in vitro including the hepatic lipase LIPC. Here, we report that the intratumoral levels of LIPC, as assessed by immunohistochemistry in two independent cohorts of NSCLC patients, positively correlate with disease outcome. In one out of two cohorts studied, the overall survival of NSCLC patients bearing LIPChigh lesions was unaffected, if not slightly worsened, by cisplatin-based adjuvant therapy. Conversely, the overall survival of patients with LIPClow lesions was prolonged by post-operative cisplatin. Pending validation in appropriate clinical series, these results suggest that LIPClow NSCLC patients would be those who mainly benefit from adjuvant cisplatin therapy. Thus, the expression levels of LIPC appear to have an independent prognostic value (and perhaps a predictive potential) in the setting of NSCLC. If these findings were confirmed by additional studies, LIPC expression levels might allow not only for NSCLC patient stratification, but also for the implementation of personalized therapeutic approaches.
doi:10.4161/cc.23517
PMCID: PMC3594265  PMID: 23343765
anaplastic lymphoma kinase; apoptosis; BCL-XL; PDXP; personalized medicine; pyridoxine
6.  CXCR2 expression in tumor cells is a poor prognostic factor and promotes invasion and metastasis in lung adenocarcinoma 
Cancer research  2012;73(2):571-582.
CXCR2 in non-small cell lung cancer (NSCLC) has been studied mainly in stromal cells and is known to increase tumor inflammation and angiogenesis. Here, we examined the prognostic importance of CXCR2 in NSCLC and the role of CXCR2 and its ligands in lung cancer cells. The effect of CXCR2 expression on tumor cells was studied using stable knockdown clones derived from a murine KRAS/p53-mutant lung adenocarcinoma cell line with high metastatic potential and an orthotopic syngeneic mouse model and in vitro using a CXCR2 small molecule antagonist (SB225002). CXCR2 protein expression was analyzed in tumor cells from 262 NSCLC. Gene expression profiles for CXCR2 and its ligands (CXCR2 axis) were analyzed in 52 human NSCLC cell lines and 442 human lung adenocarcinomas. Methylation of CXCR2 axis promoters was determined in 70 human NSCLC cell lines. Invasion and metastasis were decreased in CXCR2 knockdown clones in vitro and in vivo. SB225002 decreased invasion in vitro. In lung adenocarcinomas, CXCR2 expression in tumor cells was associated with smoking and poor prognosis. CXCR2 axis gene expression profiles in human NSCLC cell lines and lung adenocarcinomas defined a cluster driven by CXCL5 and associated with smoking, poor prognosis and RAS pathway activation. Expression of CXCL5 was regulated by promoter methylation. The CXCR2 axis may be an important target in smoking-related lung adenocarcinoma.
doi:10.1158/0008-5472.CAN-12-0263
PMCID: PMC3548940  PMID: 23204236
lung cancer; prognosis; metastasis; CXCR2; chemokine
7.  Characterizing the molecular spatial and temporal field of injury in early stage smoker non-small cell lung cancer patients after definitive surgery by expression profiling 
Gene expression alterations in response to cigarette smoke have been characterized in normal-appearing bronchial epithelium of healthy smokers and it has been suggested that adjacent histologically normal tissue display tumor-associated molecular abnormalities. We sought to delineate the spatial and temporal molecular lung field of injury in smoker early stage non-small cell lung cancer (NSCLC) patients (n=19) who were accrued into a surveillance clinical trial for annual follow-up and bronchoscopies within one year after definitive surgery. Bronchial brushings and biopsies were obtained from six different sites in the lung at the time of inclusion in the study and at 12, 24 and 36 months after the first time point. Affymetrix Human Gene 1.0 ST arrays were used for whole-transcript expression profiling of airways (n=391). Microarray analysis identified gene features (n=1165) that were non-uniform by site and differentially expressed between airways adjacent to tumors relative to more distant samples as well as those (n=1395) that were significantly altered with time up to three years. In addition, gene-interaction networks mediated by PI3K and ERK1/2 were modulated in adjacent compared to contralateral airways and the latter network with time. Furthermore, phosphorylated AKT and ERK1/2 immunohistochemical expression were significantly increased with time (nuclear pAKT, p=0.03; cytoplasmic pAKT, p<0.0001; pERK1/2, p=0.02) and elevated in adjacent compared to more distant airways (nuclear pAKT, p=0.04; pERK1/2, p=0.03). This study highlights spatial and temporal cancer-associated expression alterations in the molecular field of injury of early stage NSCLC patients after definitive surgery that warrant further validation in independent studies.
doi:10.1158/1940-6207.CAPR-12-0290
PMCID: PMC3774536  PMID: 23087048
Early stage NSCLC; gene expression profiling; lung airway epithelium; chemoprevention
8.  Prognostic impact of Insulin Receptor Expression on Survival of Patients with Nonf-Small Cell Lung Cancer 
Cancer  2011;118(9):2454-2465.
Background
The purpose of this study was to characterize insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R) expression in patients with non-small cell lung cancer (NSCLC).
Methods
A total of 459 patients who underwent curative resection of NSCLC were studied (median follow-up duration, 4.01 years). Expression of the IR and IGF-1R protein in tumor specimens was assessed immunohistochemically using tissue microarrays.
Results
The cytoplasmic IR score was higher in patients with adenocarcinoma (ADC) than in those with squamous cell carcinoma (SCC) whereas cytoplasmic IGF-1R score was higher in patients with SCC than those with ADC. Neither IR nor IGF-1R expression was associated with sex, smoking history, or clinical stage. Patients with positive IR or IGF-1R expression levels had poor recurrence-free (RFS) (3.8 vs. 3.3 years; 3.8 vs. 2.0 years, respectively), but similar overall survival (OS). Patients with high expression levels of IR and IGF-1R had shorter RFS and OS compared to those with low levels of IR and/or IGF-1R expression. Finally, a multivariate analysis revealed the impact of IR, but not of IGF-1R, as an independent predictive marker of NSCLC survival: hazard ratio (HR) for OS, 1.005 (95% confidence interval [CI], 1.001 – 1.010], HR for RFS, 1.005 (95% CI, 1.001 – 1.009), when IR score was tested as a continuous variable.
Conclusions
Overexpression of IR predicts a poor survival among patients with NSCLC, especially those with SCC. These results might serve as future guidance to the clinical trials involving IR or IGR-1R targeting agents.
doi:10.1002/cncr.26492
PMCID: PMC3298843  PMID: 21952750
Carcinoma; Non-Small-Cell Lung; Receptor; Insulin; Receptor; IGF Type 1; Prognosis; Survival
9.  High Expression of Folate Receptor Alpha in Lung Cancer Correlates with Adenocarcinoma Histology and EGFR Mutation 
Journal of Thoracic Oncology  2012;7(5):833-840.
Introduction
Folate receptor alpha (FRα) and reduced folate carrier-1 (RFC1) regulate uptake of folate molecules inside the cell. FRα is a potential biomarker of tumors response to antifolate chemotherapy and a target for therapy using humanized monocloncal antibody. Information on the protein expression of these receptors in non–small cell lung carcinoma (NSCLC) is limited.
Material and Methods
Expressions of FRα and RFC1 were examined by IHC in 320 surgically resected NSCLC (202 adenocarcinomas and 118 squamous cell carcinomas) tissue specimens and correlated with patients’ clinicopathologic characteristics. FOLR1 mRNA expression was examined using publicly available microarray datasets. FRα expression was correlated with thymidylate synthase (TS) and p53 expression in NSCLCs, and with EGFR and KRAS mutations in adenocarcinomas.
Results
NSCLC overexpressed FRα and RFC1. In a multivariate analysis, lung adenocarcinomas were more likely to express FRα in the cytoplasm (odds ratio [OR] = 4.39; P<0.0001) and membrane (OR = 5.34; P<0.0001) of malignant cells than squamous cell carcinomas. Tumors from never-smokers were more likely to express cytoplasmic (OR = 3.35; P<0.03) and membrane (OR = 3.60; P=0.0005) FRα than those from smokers. In adenocarcinoma, EGFR mutations correlated with higher expression of membrane FRα and FOLR1 gene expressions. High levels of FRα expression was detected in 42 NSCLC advanced metastatic tumor tissues.
Conclusions
FRα and RFC1 proteins are overexpressed in NSCLC tumor tissues. The high levels of FRα in lung adenocarcinomas may be associated to these tumors’ better responses to antifolate chemotherapy and represents a potential novel target for this tumor type.
doi:10.1097/JTO.0b013e31824de09c
PMCID: PMC3383601  PMID: 22729036
non–small cell lung carcinoma; EGFR; membrane transporter; FRα; FRC1
10.  G-Protein Coupled Receptor Family C, Group 5, Member A (GPRC5A) Expression Is Decreased in the Adjacent Field and Normal Bronchial Epithelia of Patients with Chronic Obstructive Pulmonary Disease and Non–Small-Cell Lung Cancer 
Introduction
Understanding oncogenes and tumor suppressor genes expression patterns is essential for characterizing lung cancer pathogenesis. We have previously demonstrated that mGprc5a/hGPRC5A is a lung-specific tumor suppressor evidenced by inflammation-mediated tumorigenesis in Gprc5a-knockout mice. The implication of GPRC5A in human lung cancer pathogenesis, including that associated with inflammatory chronic obstructive pulmonary disease (COPD), a risk factor for the malignancy, remains elusive.
Methods
We sought to examine GPRC5A immunohistochemical expression in histologically normal bronchial epithelia (NBE) from lung disease-free never- and ever-smokers (n = 13 and n = 18, respectively), from COPD patients with (n = 26) and without cancer (n = 24) and in non-small cell lung cancers (NSCLCs) (n = 474). Quantitative assessment of GPRC5A transcript expression in airways (n = 6), adjacent NBEs (n = 29) and corresponding tumors (n = 6) from 6 NSCLC patients was also performed.
Results
GPRC5A immunohistochemical expression was significantly lower in tumors compared to uninvolved NBE (p < 0.0001) and was positively associated with adenocarcinoma histology (p < 0.001). GPRC5A airway expression was highest in lung disease-free NBE, decreased and intermediate in NBE of cancer-free COPD patients (p = 0.004) and further attenuated and lowest in epithelia of COPD patients with adenocarcinoma and SCC (p < 0.0001). Furthermore, GPRC5A mRNA was significantly decreased in NSCLCs and corresponding NBE compared to uninvolved normal lung (p = 0.03).
Conclusions
Our findings highlight decreased GPRC5A expression in the field cancerization of NSCLC, including that associated with lung inflammation. Assessment of the use of GPRC5A expression as a risk factor for NSCLC development in COPD patients is warranted.
doi:10.1097/JTO.0b013e31826bb1ff
PMCID: PMC3622592  PMID: 23154545
Field cancerization; Chronic obstructive pulmonary disease; Non–small-cell lung cancer; g-protein coupled receptor family C; group 5; member A; gene expression
11.  Histopathologic Response Criteria Predict Survival of Patients with Resected Lung Cancer After Neoadjuvant Chemotherapy 
Introduction
We evaluated the ability of histopathologic response criteria to predict overall survival (OS) and disease-free survival (DFS) in patients with surgically resected non-small cell lung cancer (NSCLC) treated with or without neoadjuvant chemotherapy.
Methods
Tissue specimens from 358 patients with NSCLC were evaluated by pathologists blinded to the patient treatment and outcome. The surgical specimens were reviewed for various histopathologic features in the tumor including percentage of residual viable tumor cells, necrosis, and fibrosis. The relationship between the histopathologic findings and OS was assessed.
Results
The percentage of residual viable tumor cells and surgical pathologic stage were associated with OS and DFS in 192 patients with NSCLC receiving neoadjuvant chemotherapy in multivariate analysis (p = 0.005 and p = 0.01, respectively). There was no association of OS or DFS with percentage of viable tumor cells in 166 patients with NSCLC who did not receive neoadjuvant chemotherapy (p = 0.31 and p = 0.45, respectively). Long-term OS and DFS were significantly prolonged in patients who had ≤10% viable tumor compared with patients with >10% viable tumor cells (5 years OS, 85% versus 40%, p < 0.0001 and 5 years DFS, 78% versus 35%, p < 0.001).
Conclusion
The percentages of residual viable tumor cells predict OS and DFS in patients with resected NSCLC after neoadjuvant chemotherapy even when controlled for pathologic stage. Histopathologic assessment of resected specimens after neoadjuvant chemotherapy could potentially have a role in addition to pathologic stage in assessing prognosis, chemotherapy response, and the need for additional adjuvant therapies.
doi:10.1097/JTO.0b013e318247504a
PMCID: PMC3465940  PMID: 22481232
Lung cancer; Neoadjuvant chemotherapy; Histopathology
12.  Robust Gene Expression Signature from Formalin-Fixed Paraffin-Embedded Samples Predicts Prognosis of Non-Small-Cell Lung Cancer Patients 
Purpose
The requirement of frozen tissues for microarray experiments limits the clinical usage of genome-wide expression profiling using microarray technology. The goal of this study is to test the feasibility of developing lung cancer prognosis gene signatures using genome-wide expression profiling of formalin-fixed paraffin-embedded (FFPE) samples, which are widely available and provide a valuable rich source for studying the association of molecular changes in cancer and associated clinical outcomes.
Experimental Design
We randomly selected 100 Non-Small-Cell lung cancer (NSCLC) FFPE samples with annotated clinical information from the UT-Lung SPORE Tissue Bank. We micro dissected tumor area from FFPE specimens, and used Affymetrix U133 plus 2.0 arrays to attain gene expression data. After strict quality control and analysis procedures, a supervised principal component analysis was used to develop a robust prognosis signature for NSCLC. Three independent published microarray data sets were used to validate the prognosis model.
Results
This study demonstrated that the robust gene signature derived from genome-wide expression profiling of FFPE samples is strongly associated with lung cancer clinical outcomes, can be used to refine the prognosis for stage I lung cancer patients and the prognostic signature is independent of clinical variables. This signature was validated in several independent studies and was refined to a 59-gene lung cancer prognosis signature.
Conclusions
We conclude that genome-wide profiling of FFPE lung cancer samples can identify a set of genes whose expression level provides prognostic information across different platforms and studies, which will allow its application in clinical settings.
doi:10.1158/1078-0432.CCR-11-0196
PMCID: PMC3166982  PMID: 21742808
Lung Cancer Prognosis; Gene Expression Signature; Formalin Fixed Paraffin Embedded Samples
13.  AP2β nucleolar localization predicts poor survival after stage I non–small cell lung cancer resection 
The Annals of Thoracic Surgery  2011;92(3):1044-1050.
Background
Activating enhancer-binding protein-2β (AP2β) is a transcription factor involved in apoptosis. The purpose of the current study was to assess the cellular location and level of AP2β in Non-Small Cell Lung Cancer (NSCLC) and normal lung tissue and investigate whether the level and localization of AP2β expression is predictive of overall survival in patients with stage I NSCLC.
Methods
We performed immunohistochemical analysis of tissue microarrays (TMAs) prepared from stage I NSCLC specimens with adjacent normal lung tissue from two independent sets of patients who underwent lung resection with curative intent at our institution. AP2β intensity was assessed in TMAs, and AP2β staining patterns were classified as either diffuseor nucleolar in the TMAs. AP2β intensity and localization were analyzed for correlation with patients' survival.
Results
Immunohistochemical analysis of TMAs showed that the intensity of AP2β immunohistochemical staining did not correlate with overall survival. When location of AP2β was analyzed in TMAs, all of the normal lung tissue had diffuse pattern of AP2β. In the first set of NSCLC, patients with nucleolar pattern had a significantly lower 5-year survival rate than patients with diffuse pattern (67% vs. 100%; P = 0.004); this finding was confirmed in the second set (64% vs. 91%; P = 0.02). Multivariate analysis revealed that nucleolar pattern was an independent predictor of poor overall survival in both sets.
Conclusions
The AP2β which is located in the nucleoplasm in normal lung tissue is found in either nucleoplasm or nucleoli in NSCLC. The patients with AP2β in the nucleoli had poor survival compared to patients with AP2β in the cytoplasm.
doi:10.1016/j.athoracsur.2011.04.029
PMCID: PMC3272351  PMID: 21871297
Lung cancer biology; survival analysis
14.  Increased VEGFR-2 Gene Copy Is Associated With Chemoresistance and Shorter Survival in Patients with Non-small Cell Lung Carcinoma Who Receive Adjuvant Chemotherapy 
Cancer research  2011;71(16):5512-5521.
Vascular endothelial growth factor-2 (VEGFR-2 or KDR) is a known endothelial target also expressed in NSCLC tumor cells. We investigated the association between alterations in the KDR gene and clinical outcome in patients with resected NSCLC (n=248). KDR copy number gains (CNGs), measured by quantitative PCR and fluorescence in situ hybridization, were detected in 32% of tumors and associated with significantly higher KDR protein and higher microvessel density than tumors without CNGs. KDR CNGs were also associated with significantly increased risk of death (HR=5.16; P=0.003) in patients receiving adjuvant platinum-based chemotherapy, but no differences were observed in patients not receiving adjuvant therapy. To investigate potential mechanisms for these associations we assessed NSCLC cell lines and found that KDR CNGs were significantly associated with in vitro resistance to platinum chemotherapy as well as increased levels of nuclear HIF-1α in both NSCLC tumor specimens and cell lines. Furthermore, KDR knockdown experiments using small interfering RNA reduced platinum resistance, cell migration, and HIF-1α levels in cells bearing KDR CNGs, providing evidence for direct involvement of KDR. No KDR mutations were detected in exons 7, 11 and 21 by PCR-based sequencing; however, two variant SNP genotypes were associated with favorable overall survival in adenocarcinoma patients. Our findings suggest that tumor cell KDR CNGs may promote a more malignant phenotype including increased chemoresistance, angiogenesis, and HIF-1α levels, and that KDR CNGs may be a useful biomarker for identifying patients at high risk for recurrence after adjuvant therapy, a group that may benefit from VEGFR-2 blockade.
doi:10.1158/0008-5472.CAN-10-2614
PMCID: PMC3159530  PMID: 21724587
15.  Identification of Gene Signatures and Molecular Markers for Human Lung Cancer Prognosis using an In vitro Lung Carcinogenesis System 
Lung cancer continues to be a major deadly malignancy. The mortality of this disease could be reduced by improving the ability to predict cancer patients' survival. We hypothesized that genes differentially expressed among cells constituting an in vitro human lung carcinogenesis model consisting of normal, immortalized, transformed, and tumorigenic bronchial epithelial cells are relevant to the clinical outcome of non–small cell lung cancer (NSCLC). Multidimensional scaling, microarray, and functional pathways analyses of the transcriptomes of the above cells were done and combined with integrative genomics to incorporate the microarray data with published NSCLC data sets. Up-regulated (n = 301) and down-regulated genes (n = 358) displayed expression level variation across the in vitro model with progressive changes in cancer-related molecular functions. A subset of these genes (n = 584) separated lung adenocarcinoma clinical samples (n = 361) into two clusters with significant survival differences. Six genes, UBE2C, TPX2, MCM2, MCM6, FEN1, and SFN, selected by functional array analysis, were also effective in prognosis. The mRNA and protein levels of one these genes—UBE2C—were significantly up-regulated in NSCLC tissue relative to normal lung and increased progressively in lung lesions. Moreover, stage I NSCLC patients with positive UBE2C expression exhibited significantly poorer overall and progression-free survival than patients with negative expression. Our studies with this in vitro model have lead to the identification of a robust six-gene signature, which may be valuable for predicting the survival of lung adenocarcinoma patients. Moreover, one of those genes, UBE2C, seems to be a powerful biomarker for NSCLC survival prediction.
doi:10.1158/1940-6207.CAPR-09-0084
PMCID: PMC3382104  PMID: 19638491
16.  Research Resource: Diagnostic and Therapeutic Potential of Nuclear Receptor Expression in Lung Cancer 
Molecular Endocrinology  2012;26(8):1443-1454.
Lung cancer is the leading cause of cancer-related death. Despite a number of studies that have provided prognostic biomarkers for lung cancer, a paucity of reliable markers and therapeutic targets exist to diagnose and treat this aggressive disease. In this study we investigated the potential of nuclear receptors (NRs), many of which are well-established drug targets, as therapeutic markers in lung cancer. Using quantitative real-time PCR, we analyzed the expression of the 48 members of the NR superfamily in a human panel of 55 normal and lung cancer cell lines. Unsupervised cluster analysis of the NR expression profile segregated normal from tumor cell lines and grouped lung cancers according to type (i.e. small vs. non-small cell lung cancers). Moreover, we found that the NR signature was 79% accurate in diagnosing lung cancer incidence in smokers (n = 129). Finally, the evaluation of a subset of NRs (androgen receptor, estrogen receptor, vitamin D receptor, and peroxisome proliferator-activated receptor-γ) demonstrated the therapeutic potential of using NR expression to predict ligand-dependent growth responses in individual lung cancer cells. Preclinical evaluation of one of these receptors (peroxisome proliferator activated receptor-γ) in mouse xenografts confirmed that ligand-dependent inhibitory growth responses in lung cancer can be predicted based on a tumor's receptor expression status. Taken together, this study establishes NRs as theragnostic markers for predicting lung cancer incidence and further strengthens their potential as therapeutic targets for individualized treatment.
doi:10.1210/me.2011-1382
PMCID: PMC3404298  PMID: 22700587
17.  HER Family Receptor Abnormalities in Lung Cancer Brain Metastases and Corresponding Primary Tumors 
Clinical Cancer Research  2009;15(15):4829-4837.
Purpose
To compare the characteristics of HER receptors and their ligands deregulation between primary tumor and corresponding brain metastases of non-small cell lung carcinoma (NSCLC).
Experimental design
Fifty five NSCLC primary tumors (PT) and corresponding brain metastases (BM) specimens were examined for the immunohistochemical expression of EGFR, phosphorylated (p)–EGFR, Her2, Her3, and p-Her3, and their ligands EGF, TGF-α, amphiregulin, epiregulin, betacellulin, heparin-binding EGFR-like growth factor, and neuregulins-1 and -2. Analysis of EGFR copy number using fluorescent in situ hybridization and mutation by PCR-based sequencing was also performed.
Results
Metastases showed significantly higher immunohistochemical expression of EGF (membrane, BM 66.0 vs. PT 48.5; P=0.027; and nucleus, BM 92.2 vs. 67.4; P=0.008), amphiregulin (nucleus, BM 53.7 vs. PT 33.7; P=0.019), p-EGFR (membrane, BM 161.5 vs. PT 76.0; P<0.0001; and cytoplasm, BM 101.5 vs. PT 55.9; P=0.014), and p-Her3 (membrane, BM 25.0 vs. PT 3.7; P=0.001) than primary tumors (PT) did. Primary tumors showed significantly higher expression of cytoplasmic TGF–α (PT 149.8 vs. BM 111.3; P=0.008) and neuregulin-1 (PT 158.5 vs. BM 122.8; P=0.006). In adenocarcinomas, a similar high frequency of EGFR copy number gain (high polysomy and amplification) was detected in primary (65%) and brain metastasis (63%) sites. However, adenocarcinoma metastases (30%) showed higher frequency of EGFR amplification than corresponding primary tumors (10%). Patients whose primary tumors showed EGFR amplification tended to develop brain metastases at an earlier time points.
Conclusions
Our findings suggest that NSCLC brain metastases have some significant differences in HER family receptors-related abnormalities from primary lung tumors.
doi:10.1158/1078-0432.CCR-08-2921
PMCID: PMC3372920  PMID: 19622585
18.  Histologic Patterns and Molecular Characteristics of Lung Adenocarcinoma Associated With Clinical Outcome 
Cancer  2011;118(11):2889-2899.
BACKGROUND
Lung adenocarcinoma is histologically heterogeneous and has 5 distinct histologic growth patterns: lepidic, acinar, papillary, micropapillary, and solid. To date, there is no consensus regarding the clinical utility of these patterns.
METHODS
The authors performed a detailed semiquantitative assessment of histologic patterns of 240 lung adenocarcinomas and determined the association with patients’ clinicopathologic features, including recurrence-free survival (RFS) and overall survival (OS) rates. In a subset of tumors, expression levels of 2 prognostic molecular markers were evaluated: thyroid transcription factor-1 (TTF-1) (n = 218) and a panel of 5 proteins (referred as the FILM signature index) (n = 185).
RESULTS
Four mutually exclusive tumor histology pattern groups were identified: 1) any solid (38%), 2) any papillary but no solid (14%), 3) lepidic and acinar but no solid or papillary (30%), and 4) acinar only (18%). Patients in group 3 had a higher RFS rate than patients in group 1 (hazard ratio [HR], 0.4510; P = .0165) and group 2 (HR, 0.4253; P = .0425). Solid pattern tumors (group 1) were associated with a lower OS rate than nonsolid pattern tumors (all stages: HR; 1.665; P = .0144; stages I and II: HR, 2.157; P = .008). In the patients who had tumors with a nonsolid pattern, high TTF-1 expression was associated significantly with higher RFS (HR, 0.994; P = .0017) and OS (HR, 0.996; P = .0276) rates in all stages, and a high FILM signature index score was associated with lower RFS and OS rates in all stages (RFS: HR, 1.343; P = .0192; OS: HR, 1.371; P = .0156) and in stages I and II (RFS: HR, 1.419; P = .0095; OS: HR, 1.315; P = .0422).
CONCLUSIONS
The presence of a solid histologic pattern was identified as a marker of unfavorable prognosis in patients with primary lung adenocarcinoma. High TTF-1 expression and low FILM signature index scores were associated with a better prognosis for patients who had tumors with a nonsolid pattern.
doi:10.1002/cncr.26584
PMCID: PMC3369269  PMID: 22020674
histologic patterns; lung adenocarcinoma; thyroid transcription factor 1; prognostic signature
19.  Divergent Genomic and Epigenomic Landscapes of Lung Cancer Subtypes Underscore the Selection of Different Oncogenic Pathways during Tumor Development 
PLoS ONE  2012;7(5):e37775.
For therapeutic purposes, non-small cell lung cancer (NSCLC) has traditionally been regarded as a single disease. However, recent evidence suggest that the two major subtypes of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SqCC) respond differently to both molecular targeted and new generation chemotherapies. Therefore, identifying the molecular differences between these tumor types may impact novel treatment strategy. We performed the first large-scale analysis of 261 primary NSCLC tumors (169 AC and 92 SqCC), integrating genome-wide DNA copy number, methylation and gene expression profiles to identify subtype-specific molecular alterations relevant to new agent design and choice of therapy. Comparison of AC and SqCC genomic and epigenomic landscapes revealed 778 altered genes with corresponding expression changes that are selected during tumor development in a subtype-specific manner. Analysis of >200 additional NSCLCs confirmed that these genes are responsible for driving the differential development and resulting phenotypes of AC and SqCC. Importantly, we identified key oncogenic pathways disrupted in each subtype that likely serve as the basis for their differential tumor biology and clinical outcomes. Downregulation of HNF4α target genes was the most common pathway specific to AC, while SqCC demonstrated disruption of numerous histone modifying enzymes as well as the transcription factor E2F1. In silico screening of candidate therapeutic compounds using subtype-specific pathway components identified HDAC and PI3K inhibitors as potential treatments tailored to lung SqCC. Together, our findings suggest that AC and SqCC develop through distinct pathogenetic pathways that have significant implication in our approach to the clinical management of NSCLC.
doi:10.1371/journal.pone.0037775
PMCID: PMC3357406  PMID: 22629454
20.  Abnormalities of the TITF-1 lineage-specific oncogene in NSCLC: Implications in lung cancer pathogenesis and prognosis 
PURPOSE
Emerging evidence suggests that aberrant expression of oncogenes contributes to development of lung malignancy. The thyroid transcription factor 1 (TITF-1) gene functions as a lineage survival gene abnormally expressed in a significant fraction of NSCLCs, in particular lung adenocarcinomas.
EXPERIMENTAL DESIGN
To better characterize TITF-1 abnormality: patterns in NSCLC, we studied TITF-1’s gene copy number using fluorescent in situ hybridization (FISH) and quantitative PCR, as well as its protein expression by immunohistochemistry analysis in a tissue microarray comprised of surgically resected NSCLC (N=321) including 204 adenocarcinomas and 117 squamous cell carcinomas (SCCs). TITF-1 copy number and protein expression were correlated with patients’ clinicopathologic characteristics, and in a subset of adenocarcinomas with EGFR and KRAS mutation status.
RESULTS
We found that increased TITF-1 protein expression was prevalent in lung adenocarcinomas only and was significantly associated with female gender (p<0.001), never smokers (p=0.004), presence of EGFR mutations (p=0.05) and better overall survival (all stages, p=0.0478. stages I and II, p=0.002). TITF-1 copy number gain (CBG) was detected by FISH analysis in both adenocarcinomas (18.9%; high CNG, 8.3%) and SCCs (20.1%; high CNG, 3.0%), and correlated significantly with the protein product (p=0.004) and presence of KRAS mutations (p=0.008) in lung adenocarcinomas. Moreover, multivariate analysis revealed that TITF-1 copy number gain was an independent predictor of poor survival of NSCLC (p=0.039).
CONCLUSIONS
Our integrative study demonstrates that the protein versus genomic expression patterns of TITF-1 have opposing roles in lung cancer prognosis and may occur preferentially in different subsets of NSCLC patients with distinct oncogene mutations.
doi:10.1158/1078-0432.CCR-10-1412
PMCID: PMC3078948  PMID: 21257719
NSCLC; TITF-1; gene copy gain; lineage-specific oncogenes
21.  A five-gene and corresponding-protein signature for stage-I lung adenocarcinoma prognosis 
PURPOSE
Identification of effective markers for outcome is expected to improve the clinical management of non-small cell lung cancer (NSCLC). Here, we assessed in NSCLC the prognostic efficacy of genes, which we had previously found to be differentially expressed in an in vitro model of human lung carcinogenesis.
EXPERIMENTAL DESIGN
Prediction algorithms and risk-score models were applied to the expression of the genes in publicly available NSCLC expression datasets. The prognostic capacity of the immunohistochemical expression of proteins encoded by these genes was also tested using formalin-fixed paraffin-embedded (FFPE) tissue specimens from 156 lung adenocarcinomas and 79 squamous cell carcinomas (SCCs).
RESULTS
The survival of all-stages (p<0.001, HR=2.0) or stage-I (p<0.001, HR=2.84) adenocarcinoma patients that expressed the five-gene in vitro lung carcinogenesis model (FILM) signature was significantly poorer than that of patients who did not. No survival differences were observed between SCCs predicted to express or lack FILM signature. Moreover, all stages (p<0.001, HR=1.95) or stage-I (p=0.001, HR=2.6) adenocarcinoma patients predicted to be at high risk by FILM transcript exhibited significantly worse survival than patients at low risk. Furthermore, the corresponding protein signature was associated with poor survival (all stages, p<0.001, HR=3.6; stage-I, p<0.001, HR=3.5; stage-IB, p<0.001, HR=4.6) and mortality risk (all stages, p=0.001, HR=4.0; stage-I, p=0.01, HR=3.4; stage-IB, p<0.001, HR=7.2) in lung adenocarcinoma patients.
CONCLUSIONS
Our findings highlight a gene and corresponding protein signature with effective capacity for identification of stage-I lung adenocarcinoma patients with poor prognosis that are likely to benefit from adjuvant therapy.
doi:10.1158/1078-0432.CCR-10-2703
PMCID: PMC3079395  PMID: 21163870
Lung adenocarcinoma; NSCLC; gene signature; prognosis
22.  Exponential Decay Nonlinear Regression Analysis of Patient Survival Curves: Preliminary Assessment in Non-Small Cell Lung Cancer 
Background
For processes that follow first order kinetics, exponential decay nonlinear regression analysis (EDNRA) may delineate curve characteristics and suggest processes affecting curve shape. We conducted a preliminary feasibility assessment of EDNRA of patient survival curves.
Methods
EDNRA was performed on Kaplan-Meier overall survival (OS) and time-to-relapse (TTR) curves for 323 patients with resected NSCLC and on OS and progression-free survival (PFS) curves from selected publications.
Results and Conclusions
In our resected patients, TTR curves were triphasic with a “cured” fraction of 60.7% (half-life [t1/2] >100,000 months), a rapidly-relapsing group (7.4%, t1/2=5.9 months) and a slowly-relapsing group (31.9%, t1/2=23.6 months). OS was uniphasic (t1/2=74.3 months), suggesting an impact of co-morbidities; hence, tumor molecular characteristics would more likely predict TTR than OS. Of 172 published curves analyzed, 72 (42%) were uniphasic, 92 (53%) were biphasic, 8 (5%) were triphasic. With first-line chemotherapy in advanced NSCLC, 87.5% of curves from 2-3 drug regimens were uniphasic vs only 20% of those with best supportive care or 1 drug (p<0.001). 54% of curves from 2-3 drug regimens had convex rapid-decay phases vs 0% with fewer agents (p<0.001). Curve convexities suggest that discontinuing chemotherapy after 3-6 cycles “synchronizes” patient progression and death. With postoperative adjuvant chemotherapy, the PFS rapid-decay phase accounted for a smaller proportion of the population than in controls (p=0.02) with no significant difference in rapid-decay t1/2, suggesting adjuvant chemotherapy may move a subpopulation of patients with sensitive tumors from the relapsing group to the cured group, with minimal impact on time to relapse for a larger group of patients with resistant tumors. In untreated patients, the proportion of patients in the rapid-decay phase increased (p=0.04) while rapid-decay t1/2 decreased (p=0.0004) with increasing stage, suggesting that higher stage may be associated with tumor cells that both grow more rapidly and have a higher probability of surviving metastatic processes than in early stage tumors.
This preliminary assessment of EDNRA suggests that it may be worth exploring this approach further using more sophisticated, statistically rigorous nonlinear modelling approaches. Using such approaches to supplement standard survival analyses could suggest or support specific testable hypotheses.
doi:10.1016/j.lungcan.2010.05.012
PMCID: PMC2962880  PMID: 20627364
exponential decay; nonlinear regression analysis; non-small cell lung cancer Running Title: Nonlinear regression of NSCLC patient survival time
23.  Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on Notch signaling 
Cancer research  2010;70(23):9937-9948.
Aldehyde dehydrogenase (ALDH) is a candidate marker for lung cancer cells with stem cell-like properties. Immunohistochemical staining of a large panel of primary non-small cell lung cancer (NSCLC) samples for the ALDH1A1, ALDH3A1 and CD133 revealed a significant correlation between ALDH1A1 (but not ALDH3A1 or CD133) expression and poor prognosis in patients including those with stage I and N0 disease. Flow cytometric analysis of a panel of lung cancer cell lines and patient tumors revealed most NSCLCs contain a subpopulation of cells with elevated ALDH activity, and that this activity is associated with ALDH1A1 expression. Isolated ALDH+ lung cancer cells were observed to be highly tumorigenic and clonogenic as well as capable of self-renewal compared to their ALDH− counterparts. Expression analysis of sorted cells revealed elevated Notch pathway transcript expression in ALDH+ cells. Suppression of the Notch pathway by treatment with either a gamma-secretase inhibitor or stable expression of shRNA against NOTCH3 resulted in a significant decrease in ALDH+ lung cancer cells, commensurate with a reduction in tumor cell proliferation and clonogenicity. Taken together, these findings indicate that ALDH selects for a subpopulation of self-renewing NSCLC stem-like cells with increased tumorigenic potential, that NSCLCs harboring tumor cells with ALDH1A1 expression have inferior prognosis, and that ALDH1A1 and CD133 identify different tumor subpopulations. Therapeutic targeting of the Notch pathway reduces this ALDH+ component, implicating Notch signaling in lung cancer stem cell maintenance.
doi:10.1158/0008-5472.CAN-10-0881
PMCID: PMC3058307  PMID: 21118965
Lung cancer; cancer stem cells; ALDH; Notch; self renewal
24.  Prognostic significance of RNA-dependent protein kinase (PKR) on non-small cell lung cancer patients 
Purpose
The role of RNA-dependent protein kinase (PKR) in antiviral defence mechanisms and in cellular differentiation, growth, and apoptosis is well known, but the role of PKR in human lung cancer remains poorly understood. To explore the role of PKR in human lung cancer, we evaluated PKR’s expression in tissue microarray specimens from both non-small cell lung cancer (NSCLC) and normal human bronchial epithelium tissue.
Experimental Design
Tissue microarray samples (TMA-1) from 231 lung cancers were stained with PKR antibody and validated on TMA-2 from 224 lung cancers. Immunohistochemical expression score was quantified by three pathologists independently. Survival probability was computed by the Kaplan-Meier method.
Results
The NSCLC cells showed lower levels of PKR expression than normal bronchial epithelium cells did. We also found a significant association between lower levels of PKR expression and lymph node metastasis. We found that loss of PKR expression is correlated with a more aggressive behavior, and that a high PKR expression predicts a subgroup of patients with a favorable outcome. Univariate and multivariate Cox proportional hazards regression models showed that a lower level of PKR expression was significantly associated with shorter survival in NSCLC patients. We further validated and confirmed that PKR to be a powerful prognostic factor in TMA-2 lung cancer (HR=0.22, P<0.0001).
Conclusions
Our findings first indicate that PKR expression is an independent prognostic variable in NSCLC patients.
doi:10.1158/1078-0432.CCR-10-0753
PMCID: PMC3070287  PMID: 20930042
PKR; Biomarker; Lung cancer
25.  The Role of PKR/eIF2α Signaling Pathway in Prognosis of Non-Small Cell Lung Cancer 
PLoS ONE  2011;6(11):e24855.
Background
In this study, we investigated whether PKR protein expression is correlated with mRNA levels and also evaluated molecular biomarkers that are associated with PKR, such as phosphorylated PKR (p-PKR) and phosphorylated eIF2α (p-eIF2α).
Methodology and Findings
We determined the levels of PKR protein expression and mRNA in 36 fresh primary lung tumor tissues by using Western blot analysis and real-time reverse-transcriptase PCR (RT-PCR), respectively. We used tissue microarrays for immunohistochemical evaluation of the expression of p-PKR and p-eIF2α proteins. We demonstrated that PKR mRNA levels are significantly correlated with PKR protein levels (Spearman's rho = 0.55, p<0.001), suggesting that PKR protein levels in tumor samples are regulated by PKR mRNA. We also observed that the patients with high p-PKR or p-eIF2α expression had a significantly longer median survival than those with little or no p-PKR or p-eIF2α expression (p = 0.03 and p = 0.032, respectively). We further evaluated the prognostic effect of combined expression of p-PKR plus PKR and p-eIF2α plus PKR and found that both combinations were strong independent prognostic markers for overall patient survival on stage I and all stage patients.
Conclusions
Our findings suggest that PKR protein expression may controlled by transcription level. Combined expression levels of PKR and p-PKR or p-eIF2α can be new markers for predicting the prognosis of patients with NSCLC.
doi:10.1371/journal.pone.0024855
PMCID: PMC3213082  PMID: 22102852

Results 1-25 (34)